Chinese Journal of Catalysis ›› 2022, Vol. 43 ›› Issue (3): 571-583.DOI: 10.1016/S1872-2067(21)63917-7
• Special column on visible-light-driven catalytic organic synthesis • Previous Articles Next Articles
Chun-Hua Maa, Yu Jia, Jie Zhaoa, Xing Hea, Shu-Ting Zhanga,*(), Yu-Qin Jianga,#(
), Bing Yub,$(
)
Received:
2021-06-14
Revised:
2021-06-14
Accepted:
2021-07-30
Online:
2022-03-18
Published:
2022-02-18
Contact:
Shu-Ting Zhang, Yu-Qin Jiang, Bing Yu
About author:
First author contact:† Dedicated to the 100th anniversary of Chemistry at Nankai University.
Supported by:
Chun-Hua Ma, Yu Ji, Jie Zhao, Xing He, Shu-Ting Zhang, Yu-Qin Jiang, Bing Yu. Transition-metal-free three-component acetalation-pyridylation of alkenes via photoredox catalysis[J]. Chinese Journal of Catalysis, 2022, 43(3): 571-583.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(21)63917-7
Entry | Catalyst (3 mol%) | Base (2 equiv.) | Solvent | Yield b (%) |
---|---|---|---|---|
1 | 4CzIPN | Cs2CO3 | DMF | 50 |
2 | 4CzIPN | Cs2CO3 | DMAC | 56 |
3 | 4CzIPN | Cs2CO3 | NMP | 53 |
4 | 4CzIPN | Cs2CO3 | DMSO | 86 |
5 | 4CzIPN | Na2CO3 | DMSO | 50 |
6 | 4CzIPN | K2CO3 | DMSO | 40 |
7 | 4CzIPN | Et3N | DMSO | 20 |
8 | 4CzIPN | DIPEA | DMSO | 27 |
9 | 4CzIPN | DMAP | DMSO | 17 |
10 | 4CzIPN | — | DMSO | N.R. |
11 c | 4CzIPN | Cs2CO3 | DMSO | N.R. |
12 | — | Cs2CO3 | DMSO | N.R. |
Table 1 Optimization of reaction conditions a.
Entry | Catalyst (3 mol%) | Base (2 equiv.) | Solvent | Yield b (%) |
---|---|---|---|---|
1 | 4CzIPN | Cs2CO3 | DMF | 50 |
2 | 4CzIPN | Cs2CO3 | DMAC | 56 |
3 | 4CzIPN | Cs2CO3 | NMP | 53 |
4 | 4CzIPN | Cs2CO3 | DMSO | 86 |
5 | 4CzIPN | Na2CO3 | DMSO | 50 |
6 | 4CzIPN | K2CO3 | DMSO | 40 |
7 | 4CzIPN | Et3N | DMSO | 20 |
8 | 4CzIPN | DIPEA | DMSO | 27 |
9 | 4CzIPN | DMAP | DMSO | 17 |
10 | 4CzIPN | — | DMSO | N.R. |
11 c | 4CzIPN | Cs2CO3 | DMSO | N.R. |
12 | — | Cs2CO3 | DMSO | N.R. |
Scheme 2. Scope of cyanopyridine. Reaction conditions: 1 (0.2 mmol), 2a (2.5 equiv.), 3a (2.5 equiv.), 4CzIPN (3 mol%), Cs2CO3 (2 equiv.), DMSO (2 mL), r.t., blue LED, 24 h under N2 atmosphere. Isolated yields were given. a Irradiation at 390 nm.
Scheme 3. Scope of styrene and glyoxylic acid acetal. Reaction conditions: 1a (0.2 mmol), 2 (2.5 equiv.), 3 (2.5 equiv.), 4CzIPN (3 mol%), Cs2CO3 (2 equiv.), DMSO (2 mL), r.t., blue LED, 24 h under N2 atmosphere. Isolated yields were given.
Scheme 4. Late-stage modification of natural resources and drug molecules. Reaction conditions: 1a (0.2 mmol), 2 (2.5 equiv.), 3a (2.5 equiv.), 4CzIPN (3 mol%), Cs2CO3 (2 equiv.), DMSO (2 mL), r.t., blue LED, 24 h under N2 atmosphere. Isolated yields were given.
Scheme 6. The formylation-pyridylation reaction in one pot. Reaction conditions: 1a (0.2 mmol), 2 (2.5 equiv.), 3 (2.5 equiv.), 4CzIPN (3 mol%), Cs2CO3 (2 equiv.), DMSO (2 mL), r.t., blue LED, 24 h under N2 atmosphere; then 2 mol/L HCl (2 mL), r.t., 3 h. Isolated yields were given.
Scheme 7. Further functional group transformation. (i) 6a (0.2 mmol), NaBH4 (1.5 equiv.), MeOH (2 mL), r.t., 3 h. (ii) 6a (0.2 mmol), NaClO2 (5 equiv.), NaH2PO4 (10 equiv.), tert-butanol (2 mL), H2O (1 mL), r.t., 6 h. (iii) PPh3CH3Br (3 equiv.), t-BuOK (2 equiv.), THF (5 mL), r.t., 0.5 h; then 6a (0.2 mmol), r.t., 12 h. (iv) 6a (0.2 mmol), CH3MgBr (1 equiv.), THF (1 mL), r.t., 1 h. Isolated yields were given.
|
[1] | Xianquan Li, Jifeng Pang, Yujia Zhao, Pengfei Wu, Wenguang Yu, Peifang Yan, Yang Su, Mingyuan Zheng. Ethanol dehydrogenation to acetaldehyde over a Cuδ+-based Cu-MFI catalyst [J]. Chinese Journal of Catalysis, 2023, 49(6): 91-101. |
[2] | Yan-Wen Ye, Yi-Ming Hu, Wan-Bin Zheng, Ai-Ping Jia, Yu Wang, Ji-Qing Lu. Hydrogenation of crotonaldehyde over ligand-capped Ir catalysts: Metal-organic interface boosts both activity and selectivity [J]. Chinese Journal of Catalysis, 2023, 47(4): 265-277. |
[3] | Shanfan Lin, Yuchun Zhi, Wenna Zhang, Xiaoshuai Yuan, Chengwei Zhang, Mao Ye, Shutao Xu, Yingxu Wei, Zhongmin Liu. Hydrogen transfer reaction contributes to the dynamic evolution of zeolite-catalyzed methanol and dimethyl ether conversions: Insight into formaldehyde [J]. Chinese Journal of Catalysis, 2023, 46(3): 11-27. |
[4] | Muhammad Tayyab, Yujie Liu, Shixiong Min, Rana Muhammad Irfan, Qiaohong Zhu, Liang Zhou, Juying Lei, Jinlong Zhang. Simultaneous hydrogen production with the selective oxidation of benzyl alcohol to benzaldehyde by a noble-metal-free photocatalyst VC/CdS nanowires [J]. Chinese Journal of Catalysis, 2022, 43(4): 1165-1175. |
[5] | Changshun Deng, Yun Cui, Junchao Chen, Teng Chen, Xuefeng Guo, Weijie Ji, Luming Peng, Weiping Ding. Enzyme-like mechanism of selective toluene oxidation to benzaldehyde over organophosphoric acid-bonded nano-oxides [J]. Chinese Journal of Catalysis, 2021, 42(9): 1509-1518. |
[6] | Tingting Yan, Sikai Yao, Weili Dai, Guangjun Wu, Naijia Guan, Landong Li. Self-aldol condensation of aldehydes over Lewis acidic rare-earth cations stabilized by zeolites [J]. Chinese Journal of Catalysis, 2021, 42(4): 595-605. |
[7] | Yuan Tan, Xiaoyan Liu, Leilei Zhang, Fei Liu, Aiqin Wang, Tao Zhang. Producing of cinnamyl alcohol from cinnamaldehyde over supported gold nanocatalyst [J]. Chinese Journal of Catalysis, 2021, 42(3): 470-481. |
[8] | Aiping Jia, Yunshang Zhang, Tongyang Song, Yiming Hu, Wanbin Zheng, Mengfei Luo, Jiqing Lu, Weixin Huang. The effects of TiO2 crystal-plane-dependent Ir-TiOx interactions on the selective hydrogenation of crotonaldehyde over Ir/TiO2 catalysts [J]. Chinese Journal of Catalysis, 2021, 42(10): 1742-1754. |
[9] | Panpan Wang, Jiahao Duan, Jie Wang, Fuming Mei, Peng Liu. Elucidating structure-performance correlations in gas-phase selective ethanol oxidation and CO oxidation over metal-doped γ-MnO2 [J]. Chinese Journal of Catalysis, 2020, 41(8): 1298-1310. |
[10] | Md. Nurnobi Rashed, Abeda Sultana Touchy, Chandan Chaudhari, Jaewan Jeon, S. M. A. Hakim Siddiki, Takashi Toyao, Ken-ichi Shimizu. Selective C3-alkenylation of oxindole with aldehydes using heterogeneous CeO2 catalyst [J]. Chinese Journal of Catalysis, 2020, 41(6): 970-976. |
[11] | Changshun Deng, Mengxia Xu, Zhen Dong, Lei Li, Jinyue Yang, Xuefeng Guo, Luming Peng, Nianhua Xue, Yan Zhu, Weiping Ding. Exclusively catalytic oxidation of toluene to benzaldehyde in an O/W emulsion stabilized by hexadecylphosphate acid terminated mixed-oxide nanoparticles [J]. Chinese Journal of Catalysis, 2020, 41(2): 341-349. |
[12] | Junhui Zhou, Guanlan Liu, Quanguo Jiang, Weina Zhao, Zhimin Ao, Taicheng An. Density functional theory calculations on single atomic catalysis: Ti-decorated Ti3C2O2 monolayer (MXene) for HCHO oxidation [J]. Chinese Journal of Catalysis, 2020, 41(10): 1633-1644. |
[13] | Dongni Yu, Weili Dai, Guangjun Wu, Naijia Guan, Landong Li. Stabilizing copper species using zeolite for ethanol catalytic dehydrogenation to acetaldehyde [J]. Chinese Journal of Catalysis, 2019, 40(9): 1375-1384. |
[14] | Yuetan Su, Wenlang Li, Guiying Li, Zhimin Ao, Taicheng An. Density functional theory investigation of the enhanced adsorption mechanism and potential catalytic activity for formaldehyde degradation on Al-decorated C2N monolayer [J]. Chinese Journal of Catalysis, 2019, 40(5): 664-672. |
[15] | Pip Hellier, Peter P. Wells, Michael Bowker. Methanol oxidation over shell-core MOx/Fe2O3 (M=Mo, V, Nb) catalysts [J]. Chinese Journal of Catalysis, 2019, 40(11): 1686-1692. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||