Chinese Journal of Catalysis ›› 2025, Vol. 72: 230-242.DOI: 10.1016/S1872-2067(24)60286-X
• Articles • Previous Articles Next Articles
Chao Fenga,b,1, Jiaxin Shaoa,1, Hanyang Wua, Afaq Hassanc, Hengpan Yanga, Jiaying Yud,*(), Qi Hua,*(
), Chuanxin Hea,*(
)
Received:
2024-12-09
Accepted:
2025-02-08
Online:
2025-05-18
Published:
2025-05-20
Contact:
*E-mail: yujiaying@sztu.edu.cn (J. Yu), hq2016@szu.edu.cn (Q. Hu), hecx@szu.edu.cn (C. He).
About author:
1Contributed equally to this work.
Supported by:
Chao Feng, Jiaxin Shao, Hanyang Wu, Afaq Hassan, Hengpan Yang, Jiaying Yu, Qi Hu, Chuanxin He. Ultra-high overpotential induces NiS2 deep reconstruction to significantly improve HER performance[J]. Chinese Journal of Catalysis, 2025, 72: 230-242.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(24)60286-X
Fig. 1. i-t and LSV diagrams of NiS2@CC at different overpotentials. (a,b) 100 mV; (c,d) 300 mV; (e,f) 500 mV; (g,h) 700 mV; (i,j) 900 mV; (k,l) 1100 mV.
Fig. 2. HER electrocatalytic properties of NiS2@CC at all reduction potentials. (a) Overpotential distribution; (b) Tafel slope plots; (c) Nyquist plots; (d) i-t curve of NiS2@CC-900; (e) Comparison of the overpotential of the HER for NiS2@CC-900 with recently reported state-of-the-art catalysts at 10 mA cm?2.
Fig. 3. The SEM images of NiS2@CC (a) and NiS2@CC-900 (b). The HR-TEM images of NiS2@CC-900 (I-V: enlarged lattice planes, inverse Fast Fourier transform (FFT) pattern and corresponding line profiles) (c) and NiS2@CC (d). (e-l) Elemental distribution mapping images of the NiS2@CC and NiS2@CC-900.
Fig. 5. XPS diagrams of NiS2@CC, NiS2@CC-900 and NiS2@CC-900 (Ar) (argon ion etching at different times). (a) Ni 2p; (b) O 1s; (c) S 2p. XPS diagrams of NiS2@CC, NiS2@CC-900 and NiS2@CC-900 (Ar) (argon ion etching 90 s). (d) Ni 2p; (e) O 1s; (f) S 2p.
Fig. 6. (a) Theoretical energy barriers for the gradual reduction of NiS2 to NiS2/Ni3S2 and then to Ni/Ni3S2. (b,c) Schematic illustration of the HER activity enhancing mechanism of the NiS2@CC-900 sample in alkaline media. Density of states of NiS2 (d), NiS2/Ni3S2 (e) and Ni/Ni3S2 (f). The orange dotted line denotes the d-band center. (g) Calculated H2O adsorption energies free energies on NiS2, NiS2/Ni3S2 and Ni/Ni3S2, where more negative values mean stronger binding strength. (h) Energy barriers of water dissociation for NiS2, NiS2/Ni3S2 and Ni/Ni3S2. (i) ΔGH* diagram for NiS2, NiS2/Ni3S2 and Ni/Ni3S2.
|
[1] | Guohao Na, Hongshun Zheng, Mingpeng Chen, Huachuan Sun, Yuewen Wu, Dequan Li, Yun Chen, Boran Zhao, Bo Zhao, Tong Zhou, Tianwei He, Yuxiao Zhang, Jianhong Zhao, Yumin Zhang, Jin Zhang, Feng Liu, Hao Cui, Qingju Liu. In-situ Pt reduction induced topological transformation of NiFe-MOF for industrial seawater splitting [J]. Chinese Journal of Catalysis, 2025, 72(5): 211-221. |
[2] | Yujie Zhan, Chengqin Zhong, Mingli Bi, Yafei Liang, Yuji Qi, Jiaqi Chen, Jiaxu Liu, Xindang Zhang, Shuai Zhang, Yehong Wang, Feng Wang. Unveiling the catalytic active sites of iron-vanadium catalysts for the selective oxidation of methanol to formaldehyde [J]. Chinese Journal of Catalysis, 2025, 72(5): 334-343. |
[3] | Yi Liu, Shuqing Zhou, Chenggong Niu, Tayirjan Taylor Isimjan, Yongfa Zhu, Dingsheng Wang, Xiulin Yang, Jieshan Qiu, Bin Wu. Boosting the Volmer step by synergistic coupling of dilute CuRu nanoalloy with Cu/Ru dual single atoms for efficient and CO-tolerant alkaline hydrogen oxidation [J]. Chinese Journal of Catalysis, 2025, 72(5): 266-276. |
[4] | Jing Liu, Xiandi Ma, Jeonghan Roh, Dongwon Shin, Ara Cho, Jeong Woo Han, Jianping Long, Zhen Zhou, Menggai Jiao, Kug-Seung Lee, EunAe Cho. Targeted construction of high-performance single-atom platinum-based electrocatalysts for hydrogen evolution reaction [J]. Chinese Journal of Catalysis, 2025, 69(2): 259-270. |
[5] | Jiaxin Li, Yan Lv, Xueyan Wu, Xinyu Guo, Zhuojun Yang, Jixi Guo, Tianhua Zhou, Dianzeng Jia. Surface confinement of sub-1 nm Pt nanoclusters on 1D/2D NiO nanotubes/nanosheets as an effective electrocatalyst for urea-assisted energy-saving hydrogen production [J]. Chinese Journal of Catalysis, 2025, 69(2): 203-218. |
[6] | Athira Krishnan, K. Archana, A. S. Arsha, Amritha Viswam, M. S. Meera. Divulging the potential role of wide band gap semiconductors in electro and photo catalytic water splitting for green hydrogen production [J]. Chinese Journal of Catalysis, 2025, 68(1): 103-145. |
[7] | Chengguang Lang, Yantong Xu, Xiangdong Yao. Perfecting HER catalysts via defects: Recent advances and perspectives [J]. Chinese Journal of Catalysis, 2024, 64(9): 4-31. |
[8] | Jiayong Xiao, Chao Jiang, Hui Zhang, Zhuo Xing, Ming Qiu, Ying Yu. Amorphous core-shell NiMoP@CuNWs rod-like structure with hydrophilicity feature for efficient hydrogen production in neutral media [J]. Chinese Journal of Catalysis, 2024, 63(8): 154-163. |
[9] | Zhipeng Li, Xiaobin Liu, Qingping Yu, Xinyue Qu, Jun Wan, Zhenyu Xiao, Jingqi Chi, Lei Wang. Recent advances in design of hydrogen evolution reaction electrocatalysts at high current density: A review [J]. Chinese Journal of Catalysis, 2024, 63(8): 33-60. |
[10] | Xiao Chen, Yunmei Du, Yu Yang, Kang Liu, Jinling Zhao, Xiaodan Xia, Lei Wang. Quenching to optimize the crystalline/amorphous ratio of CoPS nanorods for hydrazine-assisted total water decomposition at ampere-level current density [J]. Chinese Journal of Catalysis, 2024, 62(7): 265-276. |
[11] | Wancheng Zhao, Jiapeng Ma, Dong Tian, Baotao Kang, Fangquan Xia, Jing Cheng, Yajun Wu, Mengyao Wang, Gang Wu. Self-supported film catalyst integrated with multifunctional carbon nanotubes and Ni-Ni(OH)2 heterostructure for promoted hydrogen evolution [J]. Chinese Journal of Catalysis, 2024, 62(7): 287-295. |
[12] | Gui Zhao, Kuan Lu, Yunan Li, Fagui Lu, Peng Gao, Bing Nan, Lina Li, Yixiao Zhang, Pengtao Xu, Xi Liu, Liwei Chen. An efficient and stable high-entropy alloy electrocatalyst for hydrogen evolution reaction [J]. Chinese Journal of Catalysis, 2024, 62(7): 156-165. |
[13] | Xuyu Luo, Ying Wang, Guang Yang, Lu Liu, Shiying Guo, Yi Cui, Xiaoyong Xu. Atomically tailoring synergistic active centers on molybdenum sulfide basal planes for alkaline hydrogen generation [J]. Chinese Journal of Catalysis, 2024, 61(6): 281-290. |
[14] | Adel Al-Salihy, Ce Liang, Abdulwahab Salah, Abdel-Basit Al-Odayni, Ziang Lu, Mengxin Chen, Qianqian Liu, Ping Xu. Ultralow Ru-doped NiMoO4@Ni3(PO4)2 core-shell nanostructures for improved overall water splitting [J]. Chinese Journal of Catalysis, 2024, 60(5): 360-375. |
[15] | Jian Yiing Loh, Joel Jie Foo, Feng Ming Yap, Hanfeng Liang, Wee-Jun Ong. Unleashing the versatility of porous nanoarchitectures: A voyage for sustainable electrocatalytic water splitting [J]. Chinese Journal of Catalysis, 2024, 58(3): 37-85. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||