Chinese Journal of Catalysis ›› 2025, Vol. 72: 243-253.DOI: 10.1016/S1872-2067(25)64681-X
• Articles • Previous Articles Next Articles
Jun Maa,b, Bing Xub, Shuo Caob,c, Shiyan Lib,d, Wei Chua,*(), Siglinda Perathonere, Gabriele Centie, Yuefeng Liub,*(
)
Received:
2024-12-14
Accepted:
2025-03-21
Online:
2025-05-18
Published:
2025-05-20
Contact:
*E-mail: yuefeng.liu@dicp.ac.cn (Y. Liu), chuwei1965@scu.edu.cn (W. Chu).
Supported by:
Jun Ma, Bing Xu, Shuo Cao, Shiyan Li, Wei Chu, Siglinda Perathoner, Gabriele Centi, Yuefeng Liu. Structural dynamics of Ni/Mo2CTx MXene catalysts under reaction modulate CO2 reduction performance[J]. Chinese Journal of Catalysis, 2025, 72: 243-253.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(25)64681-X
Fig. 1. (a) Schematic showing the synthesis of 2D Mo2CTx MXene and Ni/Mo2CTx catalyst. XRD patterns (b), XPS survey spectra (c) and Raman spectra (d) of Mo2Ga2C, Mo2CTx and Ni/Mo2CTx.
Fig. 2. (a) CO2 conversion and CO selectivity as a function of reaction temperature in three cycles. (b) CO2 conversion rate and product selectivity of Ni/Mo2CTx after reduction and after treatment on CO2 hydrogenation conditions at different temperatures for 2 h. (c) CO2 reaction rate and selectivity of Ni/Mo2CTx-R at 500 °C. (d) Stability test of Ni/Mo2CTx-T500 at 500 °C. Reaction conditions: mcat. = 50.0 mg, WHSV = 60000 mL·gcat-1·h-1, H2/CO2 = 4.
Fig. 3. BF-STEM image (a) and EELS image and corresponding EELS mapping (b) of Ni/Mo2CTx-R, EELS spectra in area (i) (c) and (ii) (d). (e) TEM image of Ni/Mo2CTx-R. (f) HR-TEM images of Ni/Mo2CTx with [001] and [100] axis view. (j) HR-TEM image of Ni/Mo2CTx-T500. HR-TEM images of Ni/Mo2CTx-T500 with [001] (k) and [100] (m) axis view. (g, i, l, n) is a schematic structural corresponding to the HR-TEM image on the left.
Fig. 4. (a) XRD patterns of Ni/Mo2CTx-R, Ni/Mo2CTx-T400, Ni/Mo2CTx-T500 and Mo2CTx-R500. (b) Raman spectra of Ni/Mo2CTx-R, Ni/Mo2CTx-T400 and Ni/Mo2CTx-T500.
Fig. 5. Mo 3d (a) andNi 2p3/2 (b) XPS spectra of Ni/Mo2CTx-R, Ni/Mo2CTx-T400 and Ni/Mo2CTx-T500 catalysts. (c) Mo-C/Mo and Ni0/Ni contents of samples calculated from XPS spectra.
Fig. 6. (a) Temperature-programmed CO2 + H2-DRIFTS ramping from 50 to 400 °C over Ni/Mo2CTx-R (a) and Ni/Mo2CTx-T500 (b). Relative intensity of carboxyl (c) and formate (d) intermediates in in-situ DRFIT spectra. (e) Scheme of Carboxyl (i), Formate (ii) and Bidentate carbonate (iii) intermediates.
Fig. 7. Kinetic D2 isotope effects experiments of CO2 hydrogenation (a) and CO hydrogenation (b). Reaction conditions: T = 220 °C, 50 mg catalyst, WHSV = 60000 mL·gcat.-1·h?1. (c) Schematic representation of the origin of the inverse kinetic isotope effect and thermodynamic isotope effect in the CO2 hydrogenation reaction. (d) The scheme of the catalytic pathway for the CO2 hydrogenation over Ni/Mo2CTx-R and Ni/Mo2CTx-T500.
|
[1] | Zhangqian Wei, Mingxiu Wang, Xinnan Lu, Zixuan Zhou, Ziqi Tang, Chunran Chang, Yong Yang, Shenggang Li, Peng Gao. An experimental and computational investigation on structural evolution of the In2O3 catalyst during the induction period of CO2 hydrogenation [J]. Chinese Journal of Catalysis, 2025, 72(5): 301-313. |
[2] | Hao Liang, Shunan Zhang, Ruonan Zhang, Haozhi Zhou, Lin Xia, Yuhan Sun, Hui Wang. Strong interaction between Fe and Ti compositions for effective CO2 hydrogenation to light olefins [J]. Chinese Journal of Catalysis, 2025, 71(4): 146-157. |
[3] | Xingjuan Li, Yuhao Guo, Qinhui Guan, Xiao Li, Lulu Zhang, Weiguang Ran, Na Li, Tingjiang Yan. High-density Au-OV synergistic sites boost tandem photocatalysis for CO2 hydrogenation to CH3OH [J]. Chinese Journal of Catalysis, 2025, 69(2): 303-314. |
[4] | Bailing Zhong, Jundie Hu, Xiaogang Yang, Yinying Shu, Yahui Cai, Chang Ming Li, Jiafu Qu. Metal species confined in metal-organic frameworks for CO2 hydrogenation: Synthesis, catalytic mechanisms, and future perspectives [J]. Chinese Journal of Catalysis, 2025, 68(1): 177-203. |
[5] | Miao Zhang, Limin Zhang, Mingrui Wang, Guanghui Zhang, Chunshan Song, Xinwen Guo. The electronic interaction of encapsulating graphene layers with FeCo alloy promotes efficient CO2 Hydrogenation to light olefins [J]. Chinese Journal of Catalysis, 2025, 68(1): 366-375. |
[6] | Haifang Mao, Yang Liu, Zhenmin Xu, Zhenfeng Bian. Defect-induced in situ electron-metal-support interactions on MOFs accelerating Fe(III) reduction for high-efficiency Fenton reactions [J]. Chinese Journal of Catalysis, 2024, 61(6): 247-258. |
[7] | Eun Hyup Kim, Min Hee Lee, Jeehye Kim, Eun Cheol Ra, Ju Hyeong Lee, Jae Sung Lee. Synergy between single atoms and nanoclusters of Pd/g-C3N4 catalysts for efficient base-free CO2 hydro-genation to formic acid [J]. Chinese Journal of Catalysis, 2023, 47(4): 214-221. |
[8] | Xiao-Tian Li, Lin Chen, Cheng Shang, Zhi-Pan Liu. Selectivity control in alkyne semihydrogenation: Recent experimental and theoretical progress [J]. Chinese Journal of Catalysis, 2022, 43(8): 1991-2000. |
[9] | Junhui Liu, Yakun Song, Xuming Guo, Chunshan Song, Xinwen Guo. Recent advances in application of iron-based catalysts for COx hydrogenation to value-added hydrocarbons [J]. Chinese Journal of Catalysis, 2022, 43(3): 731-754. |
[10] | Longtai Li, Bin Yang, Biao Gao, Yifu Wang, Lingxia Zhang, Tatsumi Ishihara, Wei Qi, Limin Guo. CO2 hydrogenation selectivity shift over In-Co binary oxides catalysts: Catalytic mechanism and structure-property relationship [J]. Chinese Journal of Catalysis, 2022, 43(3): 862-876. |
[11] | Jijie Wang, Jittima Meeprasert, Zhe Han, Huan Wang, Zhendong Feng, Chizhou Tang, Feng Sha, Shan Tang, Guanna Li, Evgeny A. Pidko, Can Li. Highly dispersed Cd cluster supported on TiO2 as an efficient catalyst for CO2 hydrogenation to methanol [J]. Chinese Journal of Catalysis, 2022, 43(3): 761-770. |
[12] | Dongyue Zhao, Yuexi Yang, Zhongnan Gao, Mengxin Yin, Ye Tian, Jing Zhang, Zheng Jiang, Xiaobo Yu, Xingang Li. Promoting NOx reduction via in situ activation of perovskite supported Pd catalysts under alternating lean-burn/fuel-rich operating atmospheres [J]. Chinese Journal of Catalysis, 2021, 42(5): 795-807. |
[13] | Minglun Cheng, Xiongfei Zhang, Yong Zhu, Mei Wang. Selective photocatalytic reduction of CO2 to CO mediated by a [FeFe]-hydrogenase model with a 1,2-phenylene S-to-S bridge [J]. Chinese Journal of Catalysis, 2021, 42(2): 310-319. |
[14] | Aiping Jia, Yunshang Zhang, Tongyang Song, Yiming Hu, Wanbin Zheng, Mengfei Luo, Jiqing Lu, Weixin Huang. The effects of TiO2 crystal-plane-dependent Ir-TiOx interactions on the selective hydrogenation of crotonaldehyde over Ir/TiO2 catalysts [J]. Chinese Journal of Catalysis, 2021, 42(10): 1742-1754. |
[15] | Bin Yang, Wei Deng, Limin Guo, Tatsumi Ishihara. Copper-ceria solid solution with improved catalytic activity for hydrogenation of CO2 to CH3OH [J]. Chinese Journal of Catalysis, 2020, 41(9): 1348-1359. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||