催化学报 ›› 2014, Vol. 35 ›› Issue (10): 1609-1618.DOI: 10.1016/S1872-2067(14)60170-4

• 综述 • 上一篇    下一篇

设计和制备能量转换和环境净化的高效异质结光催化剂

余长林a, 周晚琴a, 余济美b, 刘鸿c, 魏龙福a   

  1. a 江西理工大学冶金与化学工程学院, 江西 赣州 341000;
    b 香港中文大学化学系, 香港 新界 沙田;
    c 中国科学院重庆绿色智能技术研究院, 重庆 400714
  • 收稿日期:2014-05-24 修回日期:2014-06-05 出版日期:2014-09-28 发布日期:2014-09-30
  • 通讯作者: 余长林, 刘鸿
  • 基金资助:

    国家自然科学基金(21067004,21263005);江西省自然科学基金青年科学基金计划(20133BAB21003);江西省青年科学家培养项目(20122BCB23015);江西省高等学校科技落地计划(KJLD14046);中国科学院百人计划.

Design and fabrication of heterojunction photocatalysts for energy conversion and pollutant degradation

Changlin Yua, Wanqin Zhoua, Jimmy C. Yub, Hong Liuc, Longfu Weia   

  1. a School of Metallurgy and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi, China;
    b Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China;
    c Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
  • Received:2014-05-24 Revised:2014-06-05 Online:2014-09-28 Published:2014-09-30
  • Supported by:

    This work was supported by the National Natural Science Foundation of China (21067004, 21263005), Young Science and Technology Project of Jiangxi Province Natural Science Foundation (20133BAB21003), Young Scientist Training Project of Jiangxi Province (20122BCB23015), the Implement Project of Science and Technology of Colleges and Universities in Jiangxi Province (KJLD14046), and One Hundred Talents Program of Chinese Academy of Sciences.

摘要:

在过去的几十年中,光催化由于具有将太阳能转化为清洁氢化学能和降解各种污染物的广泛应用前景,因而引起了人们广泛关注. 近期,很多研究表明,两个具有相匹配电子能级结构的半导体形成接触良好的异质结,可以有效地促进电荷转移和抑制光生电子(e-)和空穴(h+)的复合,从而显著提高光催化剂的活性和稳定性. 本文主要讨论了异质结对半导体光催化剂的促进作用;分析了异质结对一些典型光催化剂如TiO2,ZnO和Ag基半导体等光催化性能的影响;讨论了异质结光催化剂的制备方法和对光催化过程影响的基本机理;最后,提出了设计和理解异质结促进光催化反应机理所面临的挑战.

关键词: 光催化剂, 异质结, 半导体, 光催化性能, 有机污染物降解, 制氢

Abstract:

Photocatalysis has attracted much attention for its promise in converting solar energy to chemical energy and in degrading various pollutants. Many recent investigations have demonstrated photocatalysts with well-defined junctions between two semiconductors with matched electronic band structures. Such structures effectively facilitate charge transfer and suppress recombination of photogenerated electrons and holes, leading to extremely high activity and stability. In this review, we focus on the influence of the heterojunction on the performance of semiconductor photocatalysts, including TiO2-based, ZnO-based, and Ag-based semiconductor photocatalysts. We also investigate fabrication methods for heterojunctions and attempt to understand the mechanisms behind photocatalysis. Finally, we propose challenges to design and clarify the mechanism for enhancing the effect of the heterojunction on photocatalyst performance.

Key words: Photocatalyst, Heterojunction, Semiconductor, Photocatalytic performance, Organic pollutant degradation, Hydrogen production