催化学报 ›› 2020, Vol. 41 ›› Issue (9): 1430-1438.DOI: 10.1016/S1872-2067(20)63612-9

• 论文 • 上一篇    

Bi量子点修饰的C掺杂二维BiOCl纳米片:增强的可见光光催化活性和反应路径

何烨a, 李解元a, 李康璐a,c, 孙明禄d, 袁潮苇d, 陈瑞敏d, 盛剑平a, 冷庚a,b, 董帆a   

  1. a 电子科技大学基础与前沿研究院, 四川成都 611731;
    b 电子科技大学资源与环境学院, 四川成都 611731;
    c 四川大学建筑与环境学院, 四川成都 610065;
    d 重庆工商大学重庆市催化与新环境材料重点实验室, 重庆 400067
  • 收稿日期:2020-02-13 修回日期:2020-03-10 出版日期:2020-09-18 发布日期:2020-08-08
  • 通讯作者: 董帆
  • 基金资助:
    国家自然科学基金(21822601,21777011);中央高校基本科研业务费专项基金(ZYGX2019Z021,2672018ZYGX2018J088);高等学校学科创新引智计划;国家万人计划和四川省科学技术厅重点研发计划(2019YFG0319).

Bi quantum dots implanted 2D C-doped BiOCl nanosheets: Enhanced visible light photocatalysis efficiency and reaction pathway

Ye Hea, Jieyuan Lia, Kanglu Lia,c, Minglu Sund, Chaowei Yuand, Ruimin Chend, Jianping Shenga, Geng Lenga,b, Fan Donga   

  1. a Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, Sichuan, China;
    b School of Resources and Environment, University of Electronic Science and Technology of China, Chengdu 611731, Sichuan, China;
    c College of Architecture and Environment, Sichuan University, Chengdu 610065, Sichuan, China;
    d Chongqing Key Laboratory of Catalysis and New Environmental Materials, College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China
  • Received:2020-02-13 Revised:2020-03-10 Online:2020-09-18 Published:2020-08-08
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (21822601, 21777011), the Fundamental Research Funds for the Central Universities (ZYGX2019Z021, 2672018ZYGX2018J088), the Plan for "National Youth Talents" of the Organization Department of the Central Committee, the 111 Project (B20030), and Key R&D Program from Department of Science and Technology of Sichuan Province (2019YFG0319).

摘要: 异相光催化技术已经受到了国内外广泛关注,逐渐成为利用太阳能解决能源与环境问题的有效手段.典型异相光催化反应的步骤包括光子捕获、载流子分离与迁移、以及载流子参与光化学氧化还原反应,因此,开发太阳能利用率高、电荷复合率低、载流子迁移效率高的高活性、高稳定性的光催化剂在环境修复和太阳能转化的实际应用中具有极其重要的意义.在半导体光催化剂上同时集成杂原子掺杂和表面等离振子共振效应可以有效提高可见光利用率和电荷分离,实现更好的太阳光利用和光催化效率.因此,我们设计了一种新型的Bi量子点修饰的C掺杂BiOCl光催化剂(C/BOC/B)来去除空气中NOx污染物.
首先,通过密度泛函理论(DFT)评估了Bi负载和C掺杂协同提高BiOCl光催化性能的可行性.理论结果证实,掺杂的C原子可以创造电子通道,诱导电荷定向地从Bi量子点转移到BiOCl(BOC);同时,具有等离子体效应的Bi量子点可以充当光捕获中心和电子供体.因此,C原子掺杂和Bi量子点负载的协同作用,有望进一步提高材料的光催化性能.随后,通过简单的溶剂热法合成了C/BOC/B样品.SEM和TEM图像显示了BOC,C/BOC和C/BOC/B样品的形貌,同时也显示了原位生成的Bi量子点均匀地分布在BOC的表面.XRD、XPS结果表明,C原子已成功掺入BOC的晶格,并且C/BOC表面存在Bi元素.同时,根据Bi的主峰在材料进行Bi负载后向负方向移动,可以推测出电子倾向于从Bi量子点流向材料本身.接着,在可见光条件下评估了C/BOC/B去除NO的光催化性能,与原始BOC或C/BOC相比,该C/BOC/B光催化剂对NO的净化表现出优异的光催化效率,去除率达到53.0%.紫外-可见光谱显示,C/BOC/B的光吸收扩展到了可见光范围.利用ESR光谱发现,C/BOC/B上的ESR信号较强,说明C/BOC/B具有较好的氧化能力,同时也证明了光生载流子在C/BOC/B上可以通过电子传递通道实现有效分离.最后,通过原位傅里叶变换红外光谱(FT-IR)结合DFT计算对NO转化的反应途径和机理进行了研究结果表明,在C/BOC/B样品上反应物与中间产物增强的吸附能有效提高材料的光催化效率,同时抑制中间产物的形成,提高目标产物选择性,可见,设计并制备的C/BOC/B表现出优异的光催化活性和脱除NO的稳定性.理论DFT计算和实验表征结果证实,C掺杂和等离子体Bi负载的协同效应对于性能的增强至关重要.本文为有效光催化剂设计提供了新的视角和策略,可进一步激发2D纳米材料的光催化性,从而推动它在异质光催化中的广泛应用.

关键词: BiOCl, C掺杂, Bi量子点, 光催化, 反应机理

Abstract: The simultaneous integration of heteroatom doping and surface plasmon resonance (SPR) modulation on semiconductor photocatalysts could be capable of improving visible light utilization and charge separation, achieving better solar light conversion and photocatalysis efficiency. For this purpose, we have designed a novel Bi quantum dots (QDs) implanted C-doped BiOCl photocatalyst (C/BOC/B) for NOx removal. The feasibility was firstly evaluated through density functional theory (DFT) calculations methods, which indicates that the enhanced photocatalytic performance could be expected owing to the synergistic effects of doped C heteroatoms and loaded Bi QDs. Then, the C/BOC/B was synthesized via a facile hydrothermal method and exhibited efficient and stable visible light photocatalytic NO removal. The results found that the doped C atoms can serve as electron guides to induce oriented charge transfer from Bi QDs to BiOCl, while the Bi QDs can act as light-capture and electron-donating sites. The reaction pathway and mechanism for NO conversion was unveiled by in situ Fourier-transform infrared spectroscopy combined with DFT calculation. The enhanced adsorption of reactants and intermediates could promote the overall reaction efficiency and selectivity in photocatalytic NO conversion. This work could provide a new perspective on the mechanistic understanding of the synergistic effects toward non-metal doping and SPR effects in semiconductor photocatalysts, and this presented technique could be extended for other semiconductor materials.

Key words: BiOCl, Carbon doping, Bi quantum dot, Photocatalysis, Reaction mechanism