催化学报 ›› 2021, Vol. 42 ›› Issue (1): 3-14.DOI: 10.1016/S1872-2067(20)63630-0
李开宁a, 张苏舒a, 李宇涵b,#(), 范佳杰c, 吕康乐a,*(
)
收稿日期:
2020-03-27
接受日期:
2020-05-02
出版日期:
2021-01-18
发布日期:
2021-01-18
通讯作者:
李宇涵,吕康乐
基金资助:
Kaining Lia, Sushu Zhanga, Yuhan Lib,#(), Jiajie Fanc, Kangle Lva,*(
)
Received:
2020-03-27
Accepted:
2020-05-02
Online:
2021-01-18
Published:
2021-01-18
Contact:
Yuhan Li,Kangle Lv
About author:
#Tel: +86-23-62768317; E-mail: lyhctbu@126.comSupported by:
摘要:
环境友好型半导体光催化是当前最具前景的光催化技术之一, 它不仅能够将太阳能转化为化学能以解决能源危机, 还可以将污染物降解矿化从而解决环境问题. 但是, 传统的半导体光催化剂受限于光利用率低、光生载流子复合率高、稳定性较差等几个方面, 无法达到理想的光催化效果. 在半导体光催化剂上负载助催化剂是提升光催化效率的有效策略之一. 负载助催化剂能够增强光生电荷在半导体与助催化剂界面间的传输, 提供额外的催化活性位点, 增强光捕获能力, 因而被广泛应用于光催化剂的改性. 目前广泛使用的贵金属助催化剂包括Au, Ag, Pt, Ru等, 虽然这些贵金属助催化剂性能优异, 但是它们存在储量少和成本高的问题, 严重影响其规模化应用. 因此, 开展高效且成本低廉的非贵金属助催化剂的研究非常必要. 近来, 一种新型二维过渡金属材料(MXene)因其具有独特的二维层状结构、优异的导电性能、出色的光学和热力学性质而成为催化领域的研究热点.
本文综述了有关非贵金属助催化剂MXene在光催化领域的最新研究进展, 内容包括: (1)MXene材料的体相与表面结构特性; (2)薄层MXene的制备方法, 例如氢氟酸刻蚀法、氢氟酸替代物刻蚀法以及熔融氟盐刻蚀法; (3)MXene基复合光催化剂的合成及改性策略, 包括机械混合、自组装、原位氧化等; (4)MXene辅助增强光催化活性机理. 论文还重点介绍了MXene作为助催化剂在光催化领域中的应用, 包括光催化分解水产氢、光催化CO2还原、光催化固氮以及有机污染物的光催化降解. 最后, 论文分析了MXene基异质结光催化剂存在的问题与面临的挑战, 并对MXene助催化剂的未来发展进行了展望. 主要观点包括: (1)关于光催化分解水、空气净化、合成氨领域的研究较少, 需要进一步开展; (2)MXene基异质结光催化剂的反应机理仍存在争议, 需采用现代化仪器设备(包括原位表征技术)对其进行更为深入的探究; (3)目前, 大多数MXene材料的制备都是通过强腐蚀性的氢氟酸或氢氟酸替代物刻蚀, 开发环境友好且高效的MXene制备方法迫在眉睫; (4)阐明MXene表面终端基团的作用有助于提升MXene基复合光催化剂的性能; (5)引入新的改性策略如局域表面等离子体共振效应(LSPR)、缺陷调控、单原子催化(SAC)等来提高MXene基光催化剂的催化性能, 是未来MXene基复合催化剂的发展方向.
李开宁, 张苏舒, 李宇涵, 范佳杰, 吕康乐. 非贵金属助催化剂MXene在光催化领域应用的研究进展[J]. 催化学报, 2021, 42(1): 3-14.
Kaining Li, Sushu Zhang, Yuhan Li, Jiajie Fan, Kangle Lv. MXenes as noble-metal-alternative co-catalysts in photocatalysis[J]. Chinese Journal of Catalysis, 2021, 42(1): 3-14.
Fig. 1. Typical structures of MXenes (M2XTx, M3X2Tx, and M4X3Tx) and compositions (mono-M MXenes and double-M MXenes), where M is an early transition metal and X is C and/or N (with the C element as an example) [21].
Fig. 4. HRTEM (A) and SEM (B) images of CdS/Ti3C2 composite (CT2.5). Comparison of the photocatalytic H2 production rate (C) [81], the band structure (D), and the proposed photocatalytic mechanism of CdS/Ti3C2Tx (E) [82].
Fig. 5. Effect of Ti3C2Tx loading amount on photocatalytic H2 production over TiO2/Ti3C2Tx composites (A), the formation of Schottky barrier at the MXene/TiO2 interface (B) [13], schematic illustration of the preparation of Ti3C2@TiO2@MoS2 composites (C), effect of MoS2 loading amount on the photocatalytic H2 production of Ti3C2@TiO2@MoS2 hybridized photocatalyst (D), and the recyclability of the Ti3C2@TiO2@MoS2-15% photocatalyst (E) [84].
Fig. 6. The mechanism of photocatalytic H2 evolution on Ti2C/g-C3N4, Ef and Ef’ refer to the Fermi levels of g-C3N4 before and after attaining equilibrium, severally (A) [85], the photocatalytic H2 production curves (B), and the corresponding H2 evolution rate (C) [86].
Catalyst | Weight (mg) | MXene | Light Source | System | Production | Ref. |
---|---|---|---|---|---|---|
TiO2/Ti3C2 | 50 | Ti3C2 | Xe lamp (300 W) | CO2 in-situ generated by NaHCO3 and HCl (200 ml Pyrex reactor) | 4.4 μmol/g/h (CH4) | [ |
Bi2WO6/Ti3C2 | 100 | 2 wt% Ti3C2 | Xe lamp | CO2 in-situ generated by NaHCO3 and H2SO4 (200 ml Pyrex reactor) | 1.78 μmol/g/h (CH4) 0.44 μmol/g/h (CH3OH) | [ |
TiO2(P25)/Ti3C2-OH | 50 | 5 wt% Ti3C2-OH | Xe lamp (300 W) | Closed circulation system (70 kPa of CO2) | 16.61 μmol/g/h (CH4) 11.74 μmol/g/h (CO) | [ |
CeO2/Ti3C2 | 50 | 5 wt% Ti3C2 | Xe lamp | CO2 in-situ generated by NaHCO3 and HCl (200 ml Pyrex reactor) | 26.1 μmol/m2/h (CO) | [ |
Ti3C2 QDs/Cu2O/Cu | — | Ti3C2 QDs | Xe lamp (300 W) | High purity CO2 gas (100 ml quartz bottle) | 153.38 ppm/cm2 (CH3OH) | [ |
CsPbBr3 /MXene | — | Ti3C2 NSs | Xe-lamp (300 W, λ>420 nm) | Photocatalyst in ethyl acetate | 14.64 μmol/g/h (CH4) 32.15 μmol/g/h (CO) | [ |
Table 1 Summary of the photocatalytic CO2 reduction over MXene-based photocatalysts.
Catalyst | Weight (mg) | MXene | Light Source | System | Production | Ref. |
---|---|---|---|---|---|---|
TiO2/Ti3C2 | 50 | Ti3C2 | Xe lamp (300 W) | CO2 in-situ generated by NaHCO3 and HCl (200 ml Pyrex reactor) | 4.4 μmol/g/h (CH4) | [ |
Bi2WO6/Ti3C2 | 100 | 2 wt% Ti3C2 | Xe lamp | CO2 in-situ generated by NaHCO3 and H2SO4 (200 ml Pyrex reactor) | 1.78 μmol/g/h (CH4) 0.44 μmol/g/h (CH3OH) | [ |
TiO2(P25)/Ti3C2-OH | 50 | 5 wt% Ti3C2-OH | Xe lamp (300 W) | Closed circulation system (70 kPa of CO2) | 16.61 μmol/g/h (CH4) 11.74 μmol/g/h (CO) | [ |
CeO2/Ti3C2 | 50 | 5 wt% Ti3C2 | Xe lamp | CO2 in-situ generated by NaHCO3 and HCl (200 ml Pyrex reactor) | 26.1 μmol/m2/h (CO) | [ |
Ti3C2 QDs/Cu2O/Cu | — | Ti3C2 QDs | Xe lamp (300 W) | High purity CO2 gas (100 ml quartz bottle) | 153.38 ppm/cm2 (CH3OH) | [ |
CsPbBr3 /MXene | — | Ti3C2 NSs | Xe-lamp (300 W, λ>420 nm) | Photocatalyst in ethyl acetate | 14.64 μmol/g/h (CH4) 32.15 μmol/g/h (CO) | [ |
Fig. 7. Comparison of the gas evolution rates of CO and CH4 over P25, 5Pt/P25, 5 wt% Ti3C2-OH/P25, and 5 wt%Ti3C2@OH/P25 under Xe lamp irradiation (A); side view of the adsorption models of CO2 on 2*2*1 Ti3C2-F and 2*2*1 Ti3C2-OH supercells (B) [61]; FESEM (C); AFM (D) images and height cutaway view (E) of ultrathin Ti3C2 MXene/Bi2WO6 [43]; evolution rate of methanol as a function of irradiation time (F); and the proposed energy level diagram of Ti3C2 QDs/Cu2O NWs/Cu and Ti3C2 sheets/Cu2O NWs/Cu photocatalysts (G) [42].
Fig. 8. Three models for the adsorption of N2 molecules on Ti3C2 (001) surface (A-C). The charge density difference of the N2-adsorbed Ti3C2 (001) surface: side view (D) and top view (E). The red and yellow isosurfaces represent the charge accumulation and depletion in the space, respectively [95].
Catalyst | Weight (mg) | MXene | Light source | Pollutant | Degradation rate or rate constant | Effect of MXene | Ref. |
---|---|---|---|---|---|---|---|
BiOBr/Ti3C2 MXene | 50 | Ti3C2 | 300-W Xe lamp (420 nm filter) | 100 mL RhB aqueous solution (20 mg/L) | 89.3% (TOC) | Improved light absorption range and accelerated the separation of photo-induced carriers. | [ |
(001)TiO2/Ti3C2 | 10 | Ti3C2 | 300-W mercury lamp | 200 mL MO aqueous solution (20 mg/L) | 97.4% (50 min) | Acting as a reservoir of holes. | [ |
In2S3/TiO2 @Ti3C2Tx | 60 | Ti3C2Tx | 300-W Xenon lamp (420 nm filter) | 100 mL MO solution (20 mg/L) | 92.1% (1 h) | Type-II heterojunction and Schottky junction prolonging electron lifetime. | [ |
TiO2/ Ti3C2 | 100 | Ti3C2 | 175-W mercury lamp | 100 mL MO (20 mg/L) | 98% (30 min) | Efficient electron-hole separation | [ |
TiO2@Ti3C2/g-C3N4 | 100 | Ti3C2 | 300-W Xe lamp (400 nm filters) | 100 mL aniline (20 mg/L); 100 mL RhB (10 mg/L) | 74.6% (aniline) 99.9% (RhB) | Excellent supporter of migrating electrons. | [ |
α-Fe2O3/Ti3C2 | 20 | Ti3C2 | 500 W Xe lamp (420 nm filter) | 100 mL RhB (10 mg/L) | 98% (2 h) | Anchoring α-Fe2O3 and enhancing light absorption. | [ |
Ceria/ Ti3C2 | 50 | Ti3C2 | 500-W Hg lamp | 50 ml RhB solution (20 mg/L) | 75% (1.5 h) | Improving the utilization of optical energy. | [ |
Bi2WO6/Ti3C2 | 20 | Ti3C2 | 300-W xenon lamp (400 nm filter) | 5 μL HCHO 5 μL CH3COCH3 was injected into the reactor and vaporized | CO2 production: 72.8 μmol/g/h (HCHO) 85.3 μmol/g/h (CH3COCH3) | Increasing VOC adsorption and trapping photo-induced electrons. | [ |
TiO2/Ti3C2Tx | 10 | Ti3C2Tx | UV or | 10 ml Carbamazepine (5 mg/L) | 98.67% (UV) 55.83% (Solar light) | Affecting the degradation mechanism and reaction route. | [ |
Solar light simulator | |||||||
Ag3PO4/Ti3C2 | 20 | Ti3C2 | 300 W Xe lamp (420 nm filter) | MO dye 2,4-dinitrophenol, tetracycline hydrochloride, Thiamphenicol chloramphenicol | 0.094 min-1 0.005 min-1 0.32 min-1 0.0042 min-1 0.025 min-1 | Electron sink to facilitate the separation of carriers, and a built-in electric field to inhibit the photo-corrosion of Ag3PO4. | [ |
Table 2 Summary of photocatalytic oxidation of organic pollutants on MXene-based photocatalysts.
Catalyst | Weight (mg) | MXene | Light source | Pollutant | Degradation rate or rate constant | Effect of MXene | Ref. |
---|---|---|---|---|---|---|---|
BiOBr/Ti3C2 MXene | 50 | Ti3C2 | 300-W Xe lamp (420 nm filter) | 100 mL RhB aqueous solution (20 mg/L) | 89.3% (TOC) | Improved light absorption range and accelerated the separation of photo-induced carriers. | [ |
(001)TiO2/Ti3C2 | 10 | Ti3C2 | 300-W mercury lamp | 200 mL MO aqueous solution (20 mg/L) | 97.4% (50 min) | Acting as a reservoir of holes. | [ |
In2S3/TiO2 @Ti3C2Tx | 60 | Ti3C2Tx | 300-W Xenon lamp (420 nm filter) | 100 mL MO solution (20 mg/L) | 92.1% (1 h) | Type-II heterojunction and Schottky junction prolonging electron lifetime. | [ |
TiO2/ Ti3C2 | 100 | Ti3C2 | 175-W mercury lamp | 100 mL MO (20 mg/L) | 98% (30 min) | Efficient electron-hole separation | [ |
TiO2@Ti3C2/g-C3N4 | 100 | Ti3C2 | 300-W Xe lamp (400 nm filters) | 100 mL aniline (20 mg/L); 100 mL RhB (10 mg/L) | 74.6% (aniline) 99.9% (RhB) | Excellent supporter of migrating electrons. | [ |
α-Fe2O3/Ti3C2 | 20 | Ti3C2 | 500 W Xe lamp (420 nm filter) | 100 mL RhB (10 mg/L) | 98% (2 h) | Anchoring α-Fe2O3 and enhancing light absorption. | [ |
Ceria/ Ti3C2 | 50 | Ti3C2 | 500-W Hg lamp | 50 ml RhB solution (20 mg/L) | 75% (1.5 h) | Improving the utilization of optical energy. | [ |
Bi2WO6/Ti3C2 | 20 | Ti3C2 | 300-W xenon lamp (400 nm filter) | 5 μL HCHO 5 μL CH3COCH3 was injected into the reactor and vaporized | CO2 production: 72.8 μmol/g/h (HCHO) 85.3 μmol/g/h (CH3COCH3) | Increasing VOC adsorption and trapping photo-induced electrons. | [ |
TiO2/Ti3C2Tx | 10 | Ti3C2Tx | UV or | 10 ml Carbamazepine (5 mg/L) | 98.67% (UV) 55.83% (Solar light) | Affecting the degradation mechanism and reaction route. | [ |
Solar light simulator | |||||||
Ag3PO4/Ti3C2 | 20 | Ti3C2 | 300 W Xe lamp (420 nm filter) | MO dye 2,4-dinitrophenol, tetracycline hydrochloride, Thiamphenicol chloramphenicol | 0.094 min-1 0.005 min-1 0.32 min-1 0.0042 min-1 0.025 min-1 | Electron sink to facilitate the separation of carriers, and a built-in electric field to inhibit the photo-corrosion of Ag3PO4. | [ |
Fig. 9. SEM image of exposing {001} TiO2/T3C2 MXene (A), charge-transfer path of {001} TiO2/T3C2 MXene (B), schematic band alignments and charge flows at {001} TiO2/T3C2 MXene interface (C), effects of scavengers on the degradation of MO with {001}TiO2/Ti3C2 under UV light irradiation (D), stability test for {001} TiO2/Ti3C2 toward MO degradation (E) [64], and histogram of CO2 production rate in photocatalytic oxidation of HCHO and CH3COCH3 over Bi2WO6 under the irradiation of visible light (F) [99].
|
[1] | 赵彬彬, 钟威, 陈峰, 王苹, 别传彪, 余火根. 高晶化g-C3N4光催化剂: 合成、结构调控和光催化产氢[J]. 催化学报, 2023, 52(9): 127-143. |
[2] | 邹心仪, 顾均. 酸性条件下二氧化碳高效电还原策略[J]. 催化学报, 2023, 52(9): 14-31. |
[3] | 刘博文, 蔡家杰, 张建军, 谭海燕, 程蓓, 许景三. MOF/CdS梯型光催化剂同时进行苯甲醇氧化和析氢反应及其机理研究[J]. 催化学报, 2023, 51(8): 204-215. |
[4] | 乔秀清, 李晨, 王紫昭, 侯东芳, 李东升. TiO2-x@C/MoO2肖特基结: 合理设计及高效电荷分离提升光催化性能[J]. 催化学报, 2023, 51(8): 66-79. |
[5] | 刘德法, 孙彬, 白硕杰, 高婷婷, 周国伟. 双助催化剂Ag/Ti3C2/TiO2分层花状微球用于增强光催化产氢活性[J]. 催化学报, 2023, 50(7): 273-283. |
[6] | 李轩, 蒋兴星, 孔艳, 孙建桔, 胡琪, 柴晓燕, 杨恒攀, 何传新. GaN/In2O3的界面工程用于高效电催化CO2还原制备甲酸[J]. 催化学报, 2023, 50(7): 314-323. |
[7] | 李慧珍, 陈艳蕾, 牛青, 王小凤, 刘哲源, 毕进红, 于岩, 李留义. 具有定向电荷传递能力的晶态线型聚酰亚胺材料驱动光催化CO2还原[J]. 催化学报, 2023, 49(6): 152-159. |
[8] | 李孜孜, 王嘉蔚, 黄衍钧, 欧阳钢锋. 钴(II)酞菁全氟化策略用于提升非贵金属体系中光催化还原CO2性能[J]. 催化学报, 2023, 49(6): 160-167. |
[9] | 李静静, 张锋伟, 詹新雨, 郭河芳, 张涵, 昝文艳, 孙振宇, 张献明. 酞菁镍分子结构的精确设计: 优化电子和空间效应用于CO2电还原[J]. 催化学报, 2023, 48(5): 117-126. |
[10] | 詹麒尼, 帅婷玉, 徐慧民, 黄陈金, 张志杰, 李高仁. 单原子催化剂的合成及其在电化学能量转换中的应用[J]. 催化学报, 2023, 47(4): 32-66. |
[11] | 李宁, 高雪云, 苏俊珲, 高旸钦, 戈磊. 类金属WO2/g-C3N4复合光催化剂的构造及其优异的光催化性能[J]. 催化学报, 2023, 47(4): 161-170. |
[12] | 解志鹏, 杨修贝, 张沛, 柯夏婷, 袁昕, 翟黎鹏, 王文滨, 秦娜, 崔乘幸, 屈凌波, 陈雄. 具有可控载流子动力学的烯烃连接的共价有机框架用于高效太阳能光催化制氢[J]. 催化学报, 2023, 47(4): 171-180. |
[13] | 朱可涵, 蒋海凤, 陈高锋, 吴昊, 丁良鑫, 王海辉. 耦合氨氧化和水还原反应实现电化学共合成硝酸盐和氢气[J]. 催化学报, 2023, 55(12): 216-226. |
[14] | 伍超, 吕康乐, 李鑫, 李覃. 光催化产氢双助催化剂: 类别、合成和设计策略[J]. 催化学报, 2023, 54(11): 137-160. |
[15] | 卞磊, 张紫阳, 田昊, 田娜娜, 马智, 王中利. 具有丰富晶界的铜催化剂在气-液平衡扩散电极上高效电还原CO2制C2H4[J]. 催化学报, 2023, 54(11): 199-211. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||