催化学报 ›› 2022, Vol. 43 ›› Issue (2): 255-264.DOI: 10.1016/S1872-2067(20)63784-6

• 论文 • 上一篇    下一篇

有机胺表面修饰的一维CdSe0.8S0.2-DETA/二维SnNb2O6 S型异质结及其可见光光催化CO2还原性能

杨辉, 张金锋#(), 代凯*()   

  1. 淮北师范学院物理与电子信息学院, 绿色和精准合成化学及应用教育部重点实验室, 安徽淮北 235000
  • 收稿日期:2021-01-20 接受日期:2021-01-20 出版日期:2022-02-18 发布日期:2021-02-22
  • 通讯作者: 张金锋,代凯
  • 基金资助:
    国家自然科学基金(51572103);国家自然科学基金(51973078);安徽省杰出青年基金(1808085J14);安徽省教育厅重大项目(KJ2020ZD005);安徽省省级教学团队(2019jxtd062);安徽省教育厅重点项目(KJ2019A0595)

Organic amine surface modified one-dimensional CdSe0.8S0.2-diethylenetriamine/two-dimensional SnNb2O6 S-scheme heterojunction with promoted visible-light-driven photocatalytic CO2 reduction

Hui Yang, Jin feng Zhang#(), Kai Dai*()   

  1. Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Physics and Electronic Information, Huaibei Normal University, Huaibei 235000, Anhui, China
  • Received:2021-01-20 Accepted:2021-01-20 Online:2022-02-18 Published:2021-02-22
  • Contact: Jin feng Zhang, Kai Dai
  • Supported by:
    This work was supported by the National Natural Science Foundation of China(51572103);This work was supported by the National Natural Science Foundation of China(51973078);the Distinguished Young Scholar of Anhui Province(1808085J14);the Major projects of Education Department of Anhui Province(KJ2020ZD005);Anhui Provincial Teaching Team(2019jxtd062);the Key Foundation of Educational Commission of Anhui Province(KJ2019A0595)

摘要:

近年来, 随着人口的增加, 汽车尾气的排放和化石燃料的燃烧加剧, 大气中的二氧化碳含量持续增加. 光催化技术是根本上解决上述问题的有效方法之一. 但目前光催化技术存在催化效率低、载流子易复合等缺点. 二维SnNb2O6纳米片能够有效缩短光生电子从材料内部到材料表面的传输距离, 减少电子和空穴在光催化剂中的复合. 但SnNb2O6的带隙较宽, 导致可见光吸收率较低, 而且在单一的半导体材料中, 强氧化还原能力和高可见光吸收能力难以共存. CdSexS1-x-DETA是一种直接带隙半导体, 在可见光范围内可调节带隙. 为了提高SnNb2O6的光催化活性和光吸收范围, 在两种半导体材料之间设计异质结是一种有效的方法. 其中, 梯型(S型)异质结可以有效促进光生电子-空穴对的分离和转移, 并保持强大的氧化和还原能力, 在有效降低电子空穴对的复合速率的同时, 增强光催化剂的活性和稳定性.
本文通过溶剂热法设计制备了S型CdSe0.8S0.2-DETA/SnNb2O6异质结构材料, 利用X射线衍射(XRD)可以观察到除CdSe0.8S0.2-DETA和SnNb2O6物相外, 没有其它组分. 采用扫描电子显微镜和透射电子显微镜(TEM)进一步观察了光催化剂的结构和形貌, 结果表明, 一维的CdSe0.8S0.2-DETA生长在二维SnNb2O6纳米片上; 能谱分析也证实该催化剂仅包含CdSe0.8S0.2-DETA和SnNb2O6中的元素, 无其它杂质; TEM的晶格条纹进一步表明两种物质是复合在一起的, 不是机械的混合物. 紫外可见光漫反射光谱(UV-Vis)结果表明, CdSe0.8S0.2-DETA和SnNb2O6的吸收带边分别为1.71和2.52 eV. 随着复合样品中CdSe0.8S0.2-DETA含量的增加, 其可见光吸收范围增大. 光电流和阻抗响应图谱表明, CdSe0.8S0.2-DETA/SnNb2O6复合材料具有较高的光响应和较低的阻抗, 有利于电子空穴的运输. 光催化CO2还原测试结果表明, 30%CdSe0.8S0.2-DETA/SnNb2O6催化CO2还原生成CO的产率(17.31 μmol·g -1·h -1)最高, 分别是SnNb2O6 (6.2 μmol·g -1·h -1)和CdSe0.8S0.2-DETA (3.6 μmol·g -1·h -1)的2.8倍和4.8倍. XRD测试结果表明, 反应后光催化剂的与新鲜光催化剂的衍射峰基本相符. 催化剂经过4次循环测试后催化性能基本稳定, 说明光催化剂具有较好的稳定性. XPS表征结果显示, 相对于纯的CdSe0.8S0.2-DETA与SnNb2O6,复合材料中Cd, Se与S的结合能降低, 周围的电子密度增大, 而复合材料中Sn, Nb与O的结合能增加, 周围的电子密度降低, 这表明电子从SnNb2O6到CdSe0.8S0.2-DETA的转移路径遵循S型异质结机理. 综上, 本文提供了一种简单的制备S型光催化方法, 可以优化能带结构以促进光生载流子的分离, 从而实现高效率的二氧化碳还原.

关键词: 光催化, CdSexS1-x-DETA, SnNb2O6, 梯型, CO2还原

Abstract:

Achieving a strong redox ability and high visible-light absorption ability in a single semiconductor material is difficult. Designing a heterojunction between two semiconductor materials is a feasible method. The new step (S-scheme) heterojunction can effectively promote the separation and transfer of photogenerated electron-hole pairs and retain strong redox ability. We designed and prepared a CdSe0.8S0.2-diethylenetriamine (DETA)/SnNb2O6 heterostructure material via the solvothermal method. When CdSe0.8S0.2-DETA and SnNb2O6 form an S-scheme heterojunction, 30%CdSe0.8S0.2-DETA/SnNb2O6 exhibits the highest CO production rate (17.31 μmol·g -1·h -1), which is factors of 2.8 and 4.8 higher than that of traditional solvothermal SnNb2O6 (6.2 μmol·g -1·h -1) and CdSe0.8S0.2-DETA (3.6 μmol·g -1·h -1), respectively. X-ray photoelectron spectroscopy characterization data provided evidence that the transfer pathway of space charge in the CO2 reduction process was in accordance with the S-scheme. This research provides a simple strategy through which one can optimize the band structure to promote the separation of photogenerated carriers and achieve a high efficiency of CO2 reduction.

Key words: Photocatalysis, CdSexS1-x-DETA, SnNb2O6, Step-scheme, CO2 reduction