催化学报 ›› 2022, Vol. 43 ›› Issue (1): 2-10.DOI: 10.1016/S1872-2067(21)63890-1

• 视角 • 上一篇    下一篇

基于表面占位效应和合理动力学模型的电催化火山关系

陈永婷a, 陈俊翔b, 陈胜利a,*()   

  1. a武汉大学化学与分子科学学院, 电化学电源湖北省重点实验室, 湖北武汉430072
    b中国科学院福建物质结构研究所, 功能纳米结构的设计与制备重点实验室, 福建福州350002
  • 收稿日期:2021-06-18 接受日期:2021-07-03 出版日期:2022-01-18 发布日期:2021-11-15
  • 通讯作者: 陈胜利
  • 基金资助:
    国家自然科学基金(21832004);国家自然科学基金(22002110)

Electrocatalytic volcano relations: surface occupation effects and rational kinetic models

Yongting Chena, Junxiang Chenb, Shengli Chena,*()   

  1. aHubei Key Laboratory of Electrochemical Power Sources, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei, China
    bCAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
  • Received:2021-06-18 Accepted:2021-07-03 Online:2022-01-18 Published:2021-11-15
  • Contact: Shengli Chen
  • About author:* Tel/Fax: +86-27-68754693; E-mail: slchen@whu.edu.cn
    Shengli Chen (College of Chemistry and Molecular Sciences, Wuhan University) received his Bachelor and Doctoral degrees in Chemistry from Wuhan University in 1991 and 1996 respectively, and conducted postdoctoral research in Departments of Chemistry in Southern Methodist University and Imperial College London during the period from August 1998 to March 2004. He has received Young Electrochemist Award from the Electrochemical Society of China, and serves as an editorial board member for ACS Catalysis, Chinese Journal of Catalysis, and Journal of Electrochemistry (China). He is currently a Luojia professor in Wuhan University. His research is focused on fundamentals and materials of electrochemical energy conversion, including electrocatalysis, theoretical and computational electrochemistry, and nanoelectrochemistry.
  • Supported by:
    National Natural Science Foundation of China(21832004);National Natural Science Foundation of China(22002110)

摘要:

电催化在水电解、燃料电池等能源和环境领域起着至关重要的作用. 电催化火山关系是预测和理解催化剂活性趋势的通用和标准工具. Nørskov等提出的基于最大反应自由能(∆G0max)的现代电催化火山关系理论, 由于未充分考虑电极电位、中间体及毒物的表面占位以及溶液pH等对电催化动力学的影响, 在高活性催化剂的准确预测方面存在局限. 本文在分析现有电催化火山关系理论模型的基础上, 介绍近年来本课题组通过结合动力学模型分析和量子化学计算构建合理电催化火山关系的思路和结果. 首先分析了表面占位相结构以及稳定中间体覆盖度等对电催化反应机理和动力学的影响, 以及由此引起的不同催化剂活性趋势随电极电位的变化, 因此, 指出在特定覆盖度下计算的吸附能可以描述对反应中间体结合强度在较大范围内变化的各种催化剂的活性顺序, 但不足以准确预测位于火山曲线顶点附近的高活性催化剂. 另外, 微观动力学模型结果表明: 只有在过电位较高时, 催化剂的本征活性(TOF)才可能由某个单一步骤的活化自由能所决定, 即存在合理的速率决定步骤(RDS). 此时基于∆G0max的火山关系具有较好的适用性; 在过电位较低时, 除与∆G0max相关的反应步骤外, 其它具有较高反应自由能的步骤对电催化反应动力学也有显著影响, 因而基于∆G0max的火山关系会失效.
为了能够在整个反应电势范围内构建更合理的电催化火山关系, 需要将表面占位相及稳定中间体的覆盖度、以及具有较高反应自由能的非∆G0max步骤等因素纳入动力学方程中. 因此, 我们发展了以“能量跨度(δE)”为速率决定项的动力学理论模型, 通过引入速率决定过渡态(TDTS)和速率决定中间体(TDI)来解决上述问题. 基于δE的火山关系的预测结果在高过电位下与∆G0max结果一致. 但不同于∆G0max模型, 基于δE的火山关系表现出明显的电位依赖特征, 即火山顶点随电极电位发生移动, 且比传统∆G0max所预期的火山顶点更为平坦, 说明在火山平台附近可能存在一系列较为优良的催化剂. 另外, 利用TDTS以及TDI可以分析反应过程中催化剂表面吸附结构的变化, 使得对反应机制的剖析一目了然, 从而为深入理解电催化过程, 设计优异的催化剂提供基础.

关键词: 电催化, 火山关系, 能量跨度, 氢电催化反应, 氧电催化反应

Abstract:

Electrocatalysis plays a vital role in technologies of energy and environment relevance, such as water electrolysis, fuel cells, synthesis of carbon and nitrogen-based fuels, etc. The volcano relations (VRs) are general and standard tools for predicting and understanding the activity trends of electrocatalysts. The modern electrocatalytic VRs are generally based on the kinetic models with the maximum free energy (ΔG0max) of reaction steps as the rate-determining term (RDT), in which some important factors that crucially impact the reaction kinetics are missed, for examples, the surface structures and coverages of reaction intermediates and spectators, other free energy demanding steps than that associated with the ΔG0max, and so on. In this perspective, we first give a brief introduction of the theoretical framework of current electrocatalytic VRs and the underlying problems in the oversimplified ΔG0max-based kinetic models, and then provide an account of our effort in constructing more rational VRs for electrocatalytic reactions. We introduce a new theoretical framework of electrocatalytic VRs based on kinetic model with the so-called energetic span (δE) serving as RDT. Since the surface-coverage effects and multiple free energy-demanding steps are considered, the VRs thus obtained show several new features such as strong potential dependence, asymmetric ascending and descending branches, relatively flat tops, and so on. The effectiveness of the δE-based VRs is verified for hydrogen and oxygen electrocatalytic reactions. Finally, research directions to further rationalize the electrocatalytic VRs are discussed.

Key words: Electrocatalysi, Volcano relations, Energetic span, Hydrogen electrocatalytic reaction, Oxygen electrocatalytic reaction