催化学报 ›› 2022, Vol. 43 ›› Issue (11): 2746-2756.DOI: 10.1016/S1872-2067(22)64090-7

• 视角 • 上一篇    下一篇

超越热力学分析的电催化理论理解

李欢a,b, 郭辰曦a, 龙军a,c, 傅笑言a,c, 肖建平a,b,d,*()   

  1. a中国科学院大连化学物理研究所催化国家重点实验室, 辽宁大连 116023
    b中国科学院大学, 北京 100049
    c浙江大学化学系, 浙江杭州 310058
    d中国科学院大连化学物理研究所, 大连洁净能源国家实验室(筹), 大连 116023
  • 收稿日期:2022-02-22 接受日期:2022-04-21 出版日期:2022-11-18 发布日期:2022-10-20
  • 通讯作者: 肖建平
  • 基金资助:
    国家重点研发计划(2021YFA1500702);国家自然科学基金(22172156);国家自然科学基金(91945302);中国科学院洁净能源创新研究院合作基金资助项目(DNL202003);辽宁省“兴辽英才计划”项目(XLYC1907099);中国科学院战略性先导科技专项(B类)(XDB36030200)

Theoretical understanding of electrocatalysis beyond thermodynamic analysis

Huan Lia,b, Chenxi Guoa, Jun Longa,c, Xiaoyan Fua,c, Jianping Xiaoa,b,d,*()   

  1. aState Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China
    bUniversity of Chinese Academy of Sciences, Beijing 100049, China
    cDepartment of Chemistry, Zhejiang University, Hangzhou 310058, Zhejiang, China
    dState Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China
  • Received:2022-02-22 Accepted:2022-04-21 Online:2022-11-18 Published:2022-10-20
  • Contact: Jianping Xiao
  • About author:Jianping Xiao (Dalian Institute of Chemical Physics, Chinese Academy of Science) received his B.A. degree from Chongqing University (China) in 2007, and Ph.D. degree from Bremen University (Germany) in 2013. He worked as a postdoctoral researcher in Dalian Institute of Chemical Physics, Chinese Academy of Sciences from 2013 to 2015. Since the end of 2015, he moved and worked at Stanford University (USA) until the end of 2017. He was awarded with National Youth Talents (2019) and Mercator Fellow from DFG, Germany (2021). His research interests mainly focus on the theory and simulation of heterogeneous catalysis and electrocatalysis, especially reaction phase diagram and anomalous activity and selectivity trend. He has published more than 90 peer-reviewed articles.
  • Supported by:
    National Key Research and Development Program of China(2021YFA1500702);National Natural Science Foundation of China(22172156);National Natural Science Foundation of China(91945302);DNL Cooperation Fund, CAS(DNL202003);Liaoning Revitalization Talents Program(XLYC1907099);Strategic Priority Research Program of the Chinese Academy of Sciences(XDB36030200)

摘要:

人类社会的绿色可持续发展将高度依赖可再生能源, 电催化技术是实现可再生能源利用的关键技术. 碳中和、反向人工氮循环和氧化学等高效策略都可以通过电催化来驱动. 电催化反应通常发生在固-液-气界面, 电极电势、电场、溶剂和溶质都可能影响催化剂的反应性能, 进而影响表面反应的活性, 然而复杂电化学界面的模拟仍是基础电化学的一个挑战. 近年来, 提出了多种理论方法期望可以真实地模拟电化学界面, 其中Nørskov等基于第一性原理计算, 开发了计算氢电极(CHE)模型, 通过改变质子-电子对的化学势来描述电极电势对反应自由能的影响. CHE模型主要用于研究热力学和计算反应自由能, 并且已在电催化中得到广泛应用.

电化学界面处的反应动力学研究对于催化剂设计至关重要, 恒定电势下质子-电子耦合转移反应能垒的计算是电催化微动力学模拟的重要挑战之一. 在过去的几十年里, 发展了多种电化学能垒的计算方法, 其中基于电容器模型提出的电荷外插值法仅通过一次常规的能垒计算及相应的表面电荷分析, 即可简便地外推得到特定电势下电化学步骤的能垒, 从而充分考虑电极电势对反应过程的影响. 除此之外, 界面处的微环境(如限域)也会对表面反应产生影响, 而且多种反应路径的竞争考虑可以提供更具有包容性的理解.

先进的理论研究是从根本上理解电催化反应的重要手段. 本文回顾了理论电催化中的一些重要问题. 电化学能垒和电势作用对于更准确地描述反应机理和活性至关重要. 同时, 竞争反应路径的考虑也是重要方面之一, 可以获得新颖的见解和反常火山型趋势. 限域空间所施加的微环境可以调节电化学界面的电容和质子的(电)化学势, 从而有可能提高反应活性, 为催化剂的设计开辟了新途径.

关键词: 电催化, 电容器模型, 电势依赖的能垒, 反常火山型趋势, 限域

Abstract:

As the green and sustainable development of human society highly relies on renewable energy, it has been recognized that electrocatalysis is a key technology to this end. High efficient ways of carbon-neutralization (eCO2RR), reverse artificial nitrogen cycle (RANC), and oxygen chemistry (OER and ORR) all can be driven by electrocatalysis. Advanced theoretical study is an important means to fundamentally understanding electrocatalytic reactions. Herein, we review a few significant issues in theoretical electrocatalysis. First, electrochemical barriers and potential effects are essential for a more accurate description of reaction mechanism and activity. Meanwhile, consideration of competitive reaction path is also one of the important aspects, as novel insights and anomalous volcano trend can be obtained. Finally, a microenvironment exerted by confined space can tune the capacitance of electrochemical interface and (electro)chemical potential of proton, resulting in a possibility to improve reaction activity, which opens a new avenue for design of catalyst.

Key words: Electrocatalysis, Capacitor model, Potential-dependent barrier, Anomalous volcano, Confinement