催化学报 ›› 2022, Vol. 43 ›› Issue (11): 2746-2756.DOI: 10.1016/S1872-2067(22)64090-7
李欢a,b, 郭辰曦a, 龙军a,c, 傅笑言a,c, 肖建平a,b,d,*()
收稿日期:
2022-02-22
接受日期:
2022-04-21
出版日期:
2022-11-18
发布日期:
2022-10-20
通讯作者:
肖建平
基金资助:
Huan Lia,b, Chenxi Guoa, Jun Longa,c, Xiaoyan Fua,c, Jianping Xiaoa,b,d,*()
Received:
2022-02-22
Accepted:
2022-04-21
Online:
2022-11-18
Published:
2022-10-20
Contact:
Jianping Xiao
About author:
Jianping Xiao (Dalian Institute of Chemical Physics, Chinese Academy of Science) received his B.A. degree from Chongqing University (China) in 2007, and Ph.D. degree from Bremen University (Germany) in 2013. He worked as a postdoctoral researcher in Dalian Institute of Chemical Physics, Chinese Academy of Sciences from 2013 to 2015. Since the end of 2015, he moved and worked at Stanford University (USA) until the end of 2017. He was awarded with National Youth Talents (2019) and Mercator Fellow from DFG, Germany (2021). His research interests mainly focus on the theory and simulation of heterogeneous catalysis and electrocatalysis, especially reaction phase diagram and anomalous activity and selectivity trend. He has published more than 90 peer-reviewed articles.
Supported by:
摘要:
人类社会的绿色可持续发展将高度依赖可再生能源, 电催化技术是实现可再生能源利用的关键技术. 碳中和、反向人工氮循环和氧化学等高效策略都可以通过电催化来驱动. 电催化反应通常发生在固-液-气界面, 电极电势、电场、溶剂和溶质都可能影响催化剂的反应性能, 进而影响表面反应的活性, 然而复杂电化学界面的模拟仍是基础电化学的一个挑战. 近年来, 提出了多种理论方法期望可以真实地模拟电化学界面, 其中Nørskov等基于第一性原理计算, 开发了计算氢电极(CHE)模型, 通过改变质子-电子对的化学势来描述电极电势对反应自由能的影响. CHE模型主要用于研究热力学和计算反应自由能, 并且已在电催化中得到广泛应用.
电化学界面处的反应动力学研究对于催化剂设计至关重要, 恒定电势下质子-电子耦合转移反应能垒的计算是电催化微动力学模拟的重要挑战之一. 在过去的几十年里, 发展了多种电化学能垒的计算方法, 其中基于电容器模型提出的电荷外插值法仅通过一次常规的能垒计算及相应的表面电荷分析, 即可简便地外推得到特定电势下电化学步骤的能垒, 从而充分考虑电极电势对反应过程的影响. 除此之外, 界面处的微环境(如限域)也会对表面反应产生影响, 而且多种反应路径的竞争考虑可以提供更具有包容性的理解.
先进的理论研究是从根本上理解电催化反应的重要手段. 本文回顾了理论电催化中的一些重要问题. 电化学能垒和电势作用对于更准确地描述反应机理和活性至关重要. 同时, 竞争反应路径的考虑也是重要方面之一, 可以获得新颖的见解和反常火山型趋势. 限域空间所施加的微环境可以调节电化学界面的电容和质子的(电)化学势, 从而有可能提高反应活性, 为催化剂的设计开辟了新途径.
李欢, 郭辰曦, 龙军, 傅笑言, 肖建平. 超越热力学分析的电催化理论理解[J]. 催化学报, 2022, 43(11): 2746-2756.
Huan Li, Chenxi Guo, Jun Long, Xiaoyan Fu, Jianping Xiao. Theoretical understanding of electrocatalysis beyond thermodynamic analysis[J]. Chinese Journal of Catalysis, 2022, 43(11): 2746-2756.
Scheme 1. Schematic view of green and sustainable energy landscape based on electrocatalysis, where eCO2RR, RANC, and oxygen electrochemistry (OER and ORR) are highlighted in green, blue and red, respectively.
Fig. 1. (a) Local atomic structures of IS, TS, and FS for monolayer and multilayer (i) models. The light blue, blue, red, and white atoms are Ag, N, O, and H, respectively. The green atom is the transferred proton. (b) Extrapolated electrochemical barriers plotted against work function (Φ) for Volmer and NO protonation reactions using monolayer and multilayer water structures on Ag(111). Reprinted with permission from Ref. [45]. Copyright 2021, American Chemical Society.
Fig. 2. Free energy diagrams for eNORR to NH3 (a) and HER (b) at low potentials, where the subfigures show the potential-dependent barriers of corresponding potential-determining steps (PDSs), calculated with a monolayer (circle) and multilayer (triangle) water structure. Theoretical (c) and experimental (d) Faradaic efficiencies of different products on Ag. Reprinted with permission from Ref. [45]. Copyright 2021, American Chemical Society.
Fig. 3. (a,b) Calculated charge transfer (Δq, the surface charge of final states was set as reference to be 0) and work function (Φ) on the surfaces at IS, TS and FS for electrochemical processes in OER, including reaction of O* coupling with deprotonated H2O (a) and OOH* deprotonation step (b). (c) Free energy diagram, with potential-dependent activation barriers for each elementary step, for OER over Co2MnO4 at 1.23 and 1.70 V vs. RHE. (d) Comparison between the experimental current (log(j)) and theoretical rate (log(TOF)) calculated by microkinetic modelling on Co2MnO4 at various electrode potentials. Reprinted with permission from Ref. [48]. Copyright 2021, Springer Nature.
Fig. 4. (a) The scheme of potential-dependent β and reaction energy diagrams for a proton-electron coupled transfer step (A* + (H+ + e-) → AH*) at different potential in subFig.s, where the atomic models schematically show the IS-like and FS-like transition states. (b) Schematic charge transfer (Δq) and work function (Φ) on the surfaces at IS, TS and FS for A* + (H+ + e-) → AH* step. Note that Δq and Φ of TS will alter between FS and IS along coordinates of work function.
Fig. 5. (a) The one-dimensional reaction phase diagram (RPD) for CO2RR, where the solid lines show the GRPD-limiting steps for the more favored COOH* path (red) and the HCOO* path (blue). (b) Comparison between the theoretical descriptor of activity (-GRPD-limiting) and the experimental activity (log[-j(A?cm-2)]). The dashed line shows the correlation between experimental and theoretical activity, which is described by the GRPD-limiting energy of the more favored path through either COOH* or HCOO*. Reprinted with permission from Ref. [56]. Copyright 2021, Springer Nature.
Fig. 6. (a-c) Comparison of potential-turnover frequency (TOF) from microkinetic modelling between electrochemical (blue) and thermochemical (black) steps in O2* (a), OOH* (b) and O* (c) conversion. (d) Theoretical activity (log(i)) based on microkinetic modeling with the fitted Tafel slopes at the high and low electrode potential based on the experiments (insert Figure). (e) GRPD-limiting steps for two-dimensional RPD with the descriptor of EadO* and EadOH* at 0.5 V vs. RHE displayed in different colors with the color bar on the right. The reactions from R1 to R8 are O2(g) + * ↔ O2*, O2* + * ↔ 2O*, OOH* + * ↔ OH* +O*, H2O(l) + O* + * ↔ 2OH*, O* + (H+ + e-) ↔ OH*, OH* + (H+ + e-) ↔ H2O(l) + *, O2* + (H+ + e-) ↔ OOH* and OOH* + (H+ + e-) ↔ H2O(l) + O*. (Potential-dependent two-dimensional RPDs at different electrode potentials of 0.5 V (f), 0.7 V (g), and 0.9 V (h) vs. RHE. The peak of the GRPD activity trend at different electrode potentials was showed as a triangle (0.5 V), circle (0.7 V), and square (0.9 V). The GRPD were showed relevant to the color bar on the right. The data was adopted with permission from Ref. [59]. Copyright 2020, American Chemical Society.
Fig. 7. Competition between N2O and NH3 production in eNORR, at high potentials. (a) Degree of rate control of different elementary steps (XRC) for N2O production. (b) Theoretical reaction rate for N2O and NH3 production, where “n” is the electron transfer number for corresponding total reactions. The inset Fig. shows the partial current densities (jpar) from experiment, obtained with the equation jpar = jtot × FE, where “jtot” is the total current density. Reprinted with permission from Ref. [45]. Copyright 2021, American Chemical Society.
Fig. 8. Calculated charge transfer (Δq) and potential variation at IS and TS with respect to FS of Volmer (a) and Heyrovsky (b) steps in HER; Calculated potential-dependent forward reaction energies (ΔE), forward kinetic barriers (Ea), and backward kinetic barriers (Eb) on Cu(211) surface for Volmer (c) and Heyrovsky (d) reactions, in confined nanoscale reactors. (e) Micro-kinetic modeling of HER with the Volmer and Heyrovsky path. The pink and blue lines are the TOFs of reactions on the open Cu(211) and Cu(211) with graphene cover, respectively. (f) Scheme of confinement energy (Econ) formation, resulting in more favorable reaction energies and lower electrochemical kinetic barrier. Econ is defined as the difference between an open system (red dots) and the confined electrochemical system (blue dots), which is composed of two components including the enhanced (electro)chemical potential of the proton and weakening the adsorption energies of adsorbates. Reprinted with permission from Ref. [63]. Copyright 2019, American Chemical Society.
|
[1] | 唐小龙, 李锋, 李方, 江燕斌, 余长林. 单原子催化剂在光催化和电催化合成过氧化氢中的研究进展[J]. 催化学报, 2023, 52(9): 79-98. |
[2] | 张季, 俞爱民, 孙成华. 非金属掺杂石墨烯异核双原子催化剂氮还原特性研究[J]. 催化学报, 2023, 52(9): 263-270. |
[3] | 胡金念, 田玲婵, 王海燕, 孟洋, 梁锦霞, 朱纯, 李隽. MXene负载3d金属单原子高效氮还原电催化剂的理论筛选[J]. 催化学报, 2023, 52(9): 252-262. |
[4] | 洪岩, 王琦, 阚子旺, 张禹烁, 郭晶, 李思琦, 刘松, 李斌. 电化学氮还原氨反应催化剂的最新研究进展[J]. 催化学报, 2023, 52(9): 50-78. |
[5] | 刘勇, 赵晓丽, 隆昶, 王晓艳, 邓邦为, 李康璐, 孙艳娟, 董帆. 原位构筑动态Cu/Ce(OH)x界面用于高活性、高选择性和高稳定性硝酸盐还原合成氨[J]. 催化学报, 2023, 52(9): 196-206. |
[6] | 高晖, 张恭, 程东方, 王永涛, 赵静, 李晓芝, 杜晓伟, 赵志坚, 王拓, 张鹏, 巩金龙. 构建Cu台阶位促进电催化CO2还原制醇类化学品的研究[J]. 催化学报, 2023, 52(9): 187-195. |
[7] | 邹心仪, 顾均. 酸性条件下二氧化碳高效电还原策略[J]. 催化学报, 2023, 52(9): 14-31. |
[8] | 周波, 石建巧, 姜一民, 肖磊, 逯宇轩, 董帆, 陈晨, 王特华, 王双印, 邹雨芹. 强化脱氢动力学实现超低电池电压和大电流密度下抗坏血酸电氧化[J]. 催化学报, 2023, 50(7): 372-380. |
[9] | 王元男, 王立娜, 张可新, 徐靖尧, 武倩楠, 谢周兵, 安伟, 梁宵, 邹晓新. 钙钛矿氧化物在水裂解反应中的电催化研究[J]. 催化学报, 2023, 50(7): 109-125. |
[10] | 周纳, 王家志, 张宁, 王志, 王恒国, 黄岗, 鲍迪, 钟海霞, 张新波. 富含缺陷的Cu@CuTCNQ复合材料增强电催化硝酸盐还原成氨[J]. 催化学报, 2023, 50(7): 324-333. |
[11] | 李轩, 蒋兴星, 孔艳, 孙建桔, 胡琪, 柴晓燕, 杨恒攀, 何传新. GaN/In2O3的界面工程用于高效电催化CO2还原制备甲酸[J]. 催化学报, 2023, 50(7): 314-323. |
[12] | Sang Eon Jun, Sungkyun Choi, Jaehyun Kim, Ki Chang Kwon, Sun Hwa Park, Ho Won Jang. 用于电化学能量转换反应的非贵金属单原子催化剂[J]. 催化学报, 2023, 50(7): 195-214. |
[13] | 牛青, 米林华, 陈玮, 李秋军, 钟升红, 于岩, 李留义. 基于共价有机框架的单位点光(电)催化材料的研究进展[J]. 催化学报, 2023, 50(7): 45-82. |
[14] | 欧阳玲, 梁杰, 罗永嵩, 郑冬冬, 孙圣钧, 刘倩, Mohamed S. Hamdy, 孙旭平, 应斌武. 电催化合成氨的研究进展[J]. 催化学报, 2023, 50(7): 6-44. |
[15] | 李静静, 张锋伟, 詹新雨, 郭河芳, 张涵, 昝文艳, 孙振宇, 张献明. 酞菁镍分子结构的精确设计: 优化电子和空间效应用于CO2电还原[J]. 催化学报, 2023, 48(5): 117-126. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||