催化学报 ›› 2022, Vol. 43 ›› Issue (11): 2772-2791.DOI: 10.1016/S1872-2067(22)64095-6
收稿日期:
2022-04-30
接受日期:
2022-07-27
出版日期:
2022-11-18
发布日期:
2022-10-20
通讯作者:
邹受忠,蔡文斌
基金资助:
Hong Lia, Kun Jiangb, Shou-Zhong Zouc,#(), Wen-Bin Caia,*(
)
Received:
2022-04-30
Accepted:
2022-07-27
Online:
2022-11-18
Published:
2022-10-20
Contact:
Shou-Zhong Zou, Wen-Bin Cai
About author:
Shouzhong Zou (Department of Chemistry, American University) earned his B.S. in Chemistry in 1991 and completed his MS studies in 1994 from Xiamen University under the guidance of Prof. Zhong-Qun Tian. He received his Ph.D. in Chemistry from Purdue University in 1999 under the direction of Prof. Michael J. Weaver. He then did postdoctoral work at Caltech with Profs. Fred C Anson and Ahmed H. Zewail. He started his independent research as an assistant professor in 2002 at Miami University (Oxford, Ohio), and was promoted to associate professor in 2008. He joined American University in the summer of 2015 as a full professor and chair. His research interests include developing catalysts for low temperature fuel cells, CO2 reduction and gas sensing, and advancing spectroscopic and microscopic techniques for the characterization of surfaces and interfaces.Supported by:
摘要:
近年来, 全世界达成了减少温室气体排放、防止气候恶化的共识. 二氧化碳电还原(CO2RR)是利用可再生能源产生的电能将CO2气体转化为高能量密度化学品的方案, 可实现CO2的有效利用和可再生能源的存储, 是其实现碳循环的有效途径. CO2RR过程涉及多个电子转移与质子耦合, 该反应体系复杂, 中间产物覆盖度低, 因此长期以来有关其电催化机理研究是一个挑战性难题. 同时, CO2RR过程中催化剂结构演变、活性位点的识别、电解质的作用机制和吸附态CO角色等问题仍存在争议. 原位振动光谱可用于监测界面上CO2还原反应过程中催化剂结构演变、捕获弱吸附的中间产物, 能够为理清反应机制和反应路径提供关键信息.
本综述介绍了原位振动光谱包括红外、拉曼和和频光谱等对CO2RR中关键基本问题的解决策略, 主要包括: (1)揭示了不同电极上CO2RR的反应中间体和反应路径; (2)探讨了CO在CO2RR中的角色, 包括CO的吸附构型、覆盖度以及作为分子探针的作用; (3)明确了催化剂(主要Cu基催化剂)的结构与组成对CO2RR活性和选择性的影响; (4)讨论了CO2RR过程阴、阳离子对界面局部电场和pH, 以及反应中间体的影响.
CO2RR过程的复杂性为该领域的研究带来了更多的挑战和机遇, 本文对原位振动光谱的未来发展和应用策略提出以下建议: (1)发展和应用能涵盖指纹区检测的高灵敏宽频红外光谱技术, 获取更多更可靠的中间物种和产物信息; (2)耦合多种原位和在线谱学方法深入揭示CO2还原催化剂构效关系; (3)发展和应用适合于膜电极体系的振动光谱技术, 探索工况条件下的CO2RR反应机制.
李宏, 蒋昆, 邹受忠, 蔡文斌. CO2电还原反应中的基础问题及原位振动光谱的对策[J]. 催化学报, 2022, 43(11): 2772-2791.
Hong Li, Kun Jiang, Shou-Zhong Zou, Wen-Bin Cai. Fundamental aspects in CO2 electroreduction reaction and solutions from in situ vibrational spectroscopies[J]. Chinese Journal of Catalysis, 2022, 43(11): 2772-2791.
Fig. 2. The schematic setup of electrochemical attenuated total reflection (ATR) infrared spectroscopy (a) and Raman spectrocopy (b). Reprinted with permission from Ref. [32]. Copyright 2020, Proceedings of the National Academy of Sciences. (c) Sum-frequency generation spectroscopy. Reprinted with permission from Ref. [33]. Copyright 2019, American Chemical Society. Note: WE refers to working electrode, RE to reference electrode and CE to counter electrode.
Fig. 3. Simplified flowchart of CO2RR mechanisms leading to C1 and C2+ product generation. * Corresponds to adsorbed species, > 2e- reduction products of CH4 and C2+ that go through the reduction of *CO intermediate (*COR) are marked in light blue. Reprinted with permission from Ref. [52]. Copyright 2020, American Chemical Society.
Fig. 4. (a) In situ time-dependent ATR-IR spectra of CO2RR on Sn electrodes at -1.4 V vs. Ag/AgCl in 0.1 mol/L K2SO4 solution saturated with CO2. The black arrow shows the direction of evolution with time and the red frame shows the carbonate species. Reprinted with permission from Ref. [53]. Copyright 2015, American Chemical Society. (b) ATR-IR spectra of thin films of indium, tin, lead, and bismuth on exposure to CO2 under reducing conditions. Reprinted with permission from Ref. [54]. Copyright 2016, American Chemical Society. In situ ATR-SEIRAS collected under different applied potentials in CO2 saturated (c) and Ar-saturated (d) 0.5 mol/L KHCO3. Reprinted with permission from Ref. [55]. Copyright 2020, John Wiley and Sons.
Fig. 5. (a) In situ SERS spectra of CO2RR at nanoporous Ag surfaces in 0.1 mol/L KHCO3 solution saturated with CO2. The arrow on the right shows the potential scanning direction. Peaks marked with black and red dashed lines are attributed to the reported and new SERS signals, respectively. Reprinted with permission from Ref. [64]. Copyright 2020, American Chemical Society. (b) Vibrational sum-frequency generation study of CO2RR at Pt/EMIM-BF4 interfaces. Reprinted with permission from Ref. [65]. Copyright 2016, Elsevier.
Fig. 6. (a) Simulated structures of possible adsorbates on Cu(100) for CO2RR and their calculated infrared-active vibrational frequencies. Cu, Li, C, O, and H atoms are depicted as orange, yellow, gray, red and white spheres. Reprinted with permission from Ref. [60]. Copyright 2017, John Wiley and Sons. (b) The vibrational density of states (v-DoSs) of *OC-CO, *OC-COH, *HOC-COH, *C-COH, *CH-COH, *C-CH, *C-CH2, and *C=C=O intermediate. In A2-G2, v-DoS from quantum mechanics molecular dynamics (QM-MD) is shown as a solid black line, the experimental frequencies are shown as a red dashed line, and the vibrational frequencies from v-QM optimization are shown as solid blue lines for comparison. Reprinted with permission from Ref. [51]. Copyright 2019, Proceedings of the National Academy of Sciences. (c) In situ Raman spectra in CO2-saturated 0.2 mol/L NaHCO3 for iodide-derived copper (ID-Cu) and oxide-derived copper (OD-Cu) samples shown the enlarged region between 850-1150 cm-1 at -1.0 V vs. Ag/AgCl. (d) The -CHx stretching region between 2700-3000 cm-1 at -0.8 V vs. Ag/AgCl. Reprinted with permission from Ref. [72]. Copyright 2020, John Wiley and Sons.
Fig. 8. The schematic diagrams showing the roles of COtop and CObrigde on different electrodes. (a) Au electrode. Reprinted with permission from Ref. [84]. Copyright 2016, Proceedings of the National Academy of Sciences. (b) Pd electrode. Reprinted with permission from Ref. [85]. Copyright 2021, American Chemical Society. (c) Polycrystalline Cu electrode. Reprinted with permission from Ref. [82]. Copyright 2018, American Chemical Society. (d) Cu electrode with Cu(0) and Cu(I). Reprinted with permission from Ref. [86]. Copyright 2020, American Chemical Society.
Fig. 9. Schematic diagrams for the observed processes on anodic treatment of mechanically polished polycrystalline Cu electrode during CO2RR using in situ time-resolved surface-enhanced Raman spectroscopy. Reprinted with permission from Ref. [98]. Copyright 2021, John Wiley and Sons.
Fig. 10. Controversial views on OD-Cu catalysts during CO2RR. (a) Partially positive-charged copper (Cuδ+) is to boost the formation of highly valued multicarbon C2+ products during CO2RR. Reprinted with permission from Ref. [111]. Copyright 2020, American Chemical Society. (b) The electrochemical prereduction process, during which Cu2O nanocubes were converted into metallic Cu phase under a negative potential of -0.34 V vs. RHE. Reprinted with permission from Ref. [32]. Copyright 2020, Proceedings of the National Academy of Sciences of the United States of American. (c) Cu(100)/Cu(111) interfaces as superior active sites for CO dimerization during CO2RR. Reprinted with permission from Ref. [109]. Copyright 2021, American Chemical Society. (d) Role of a hydroxide layer on Cu electrodes in electrochemical CO2 Reduction. Reprinted with permission from Ref. [95]. Copyright 2019, American Chemical Society.
Fig. 11. (a) Schematic illustration of the effect of alkali metal cations on the local interfacial electric field on Cu electrodes. (b) Peak frequencies of the C≡O stretch band of linearly-bonded CO as a function of applied potential in CO-saturated 0.1 mol/L alkali metal bicarbonates as indicated. Reprinted with permission from Ref. [149]. Copyright 2017, The Royal Society of Chemistry. (c) Schematic illustration of the effect of alkali metal cations on local pH on Cu electrodes. (d) Steady-state pH at the metal-electrolyte interface during the electroreduction of CO2 at -1.0 V vs. RHE in CO2-saturated 0.05 mol/L M2CO3 solutions (M = Li+, Na+, K+, Cs+). Reprinted with permission from Ref. [154]. Copyright 2017, American Chemical Society.
|
[1] | 石靖, 郭煜华, 谢飞, 章名田, 张洪涛. 氧化还原活性配体的电子效应对钌催化水氧化反应的影响[J]. 催化学报, 2023, 52(9): 271-279. |
[2] | 杨焕焕, 李诗颖, 许群. 铜基催化剂电催化高效还原CO2制备C2+产物的调控策略[J]. 催化学报, 2023, 48(5): 32-65. |
[3] | 刘丹卿, 张丙兴, 赵国强, 陈建, 潘洪革, 孙文平. 原位电化学扫描探针显微镜技术在电催化领域的应用进展[J]. 催化学报, 2023, 47(4): 93-120. |
[4] | 孔艳, 蒋兴星, 李轩, 孙建桔, 胡琪, 柴晓燕, 杨恒攀, 何传新. 超高质量活性的碳纳米纤维包覆铋纳米颗粒用于高效二氧化碳电还原制甲酸[J]. 催化学报, 2023, 45(2): 95-106. |
[5] | Ernest Pahuyo Delmo, 王忆安, 王菁, 朱尚乾, 李铁怀, 秦雪苹, 田一博, 赵青蓝, Juhee Jang, 王一诺, 谷猛, 张莉莉, 邵敏华. 金属有机框架-离子液体混合催化剂用于电化学还原二氧化碳生成甲烷[J]. 催化学报, 2022, 43(7): 1687-1696. |
[6] | Chuncheng Liu, Evgeny A. Uslamin, Sophie H. van Vreeswijk, Irina Yarulina, Swapna Ganapathy, Bert M. Weckhuysen, Freek Kapteijn, Evgeny A. Pidko. MFI/MEL分子筛催化甲醇制烯烃反应关键参数的集成方法[J]. 催化学报, 2022, 43(7): 1879-1893. |
[7] | 王梦茹, 王奕, 牟效玲, 林荣和, 丁云杰. 1,3-丁二烯选择性加氢催化剂的设计策略以及构效关系[J]. 催化学报, 2022, 43(4): 1017-1041. |
[8] | 苏海胜, 常晓侠, 徐冰君. 表面增强振动光谱在电催化领域的运用: 基本原理、挑战和展望[J]. 催化学报, 2022, 43(11): 2757-2771. |
[9] | 赵小雪, 许梦阳, 宋相海, 周伟强, 刘鑫, 霍鹏伟. Fe-MOF/g-C3N4嵌入式3D/2D S型异质结的构建及其光还原CO2性能[J]. 催化学报, 2022, 43(10): 2625-2636. |
[10] | 郭凯, 雷海涛, 李夏亮, 张宗尧, 王亚博, 郭鸿波, 张伟, 曹睿. 碱金属阳离子对铁卟啉电催化CO2还原的影响[J]. 催化学报, 2021, 42(9): 1439-1444. |
[11] | 王嘉, 尤瑞, 千坤, 潘洋, 杨玖重, 黄伟新. Cl-改性对Ag/Al2O3催化剂结构及其催化C3H6-SCR和H2/C3H6-SCR反应性能的影响[J]. 催化学报, 2021, 42(12): 2242-2253. |
[12] | 曹宇飞, 戈钧. 酶复合催化剂原位合成新方法及生物催化应用[J]. 催化学报, 2021, 42(10): 1625-1633. |
[13] | 杨莉, 石利军, 夏春谷, 李福伟. 钯催化芳香硝基化合物与烯烃的选择性还原羰化酰胺化反应[J]. 催化学报, 2020, 41(7): 1152-1160. |
[14] | 李雪梅, 田俊英, 刘海龙, 唐从奎, 夏春谷, 陈静, 黄志威. 负载型Ni催化剂高效催化2-羟基四氢吡喃还原胺化制备5-氨基-1-戊醇[J]. 催化学报, 2020, 41(4): 631-641. |
[15] | 许国光, 王敏, 王健, 蔺洪振, 吴扬, 魏洋, 张跃钢. 原位电化学表征技术[J]. 催化学报, 2019, 40(s1): 187-199. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||