催化学报 ›› 2024, Vol. 61: 37-53.DOI: 10.1016/S1872-2067(24)60028-8
刘文元a, 李珺a, 陈撰a, 梁志燕a, 杨博a, 杜昆a, 富蒋宸a, 邢明阳a,c,*()
收稿日期:
2024-02-13
接受日期:
2024-04-07
出版日期:
2024-06-18
发布日期:
2024-06-20
通讯作者:
* 电子信箱: 基金资助:
Wenyuan Liua, Jun Lia, Zhuan Chena, Zhiyan Lianga, Bo Yanga, Kun Dua, Jiangchen Fua, Ali Reza Mahjoubb, Mingyang Xinga,c,*()
Received:
2024-02-13
Accepted:
2024-04-07
Online:
2024-06-18
Published:
2024-06-20
Contact:
* E-mail: About author:
Mingyang Xing (School of Chemistry and Molecular Engineering, East China University of Science and Technology) is the Professor, doctoral supervisor in the School of Chemistry and Molecular Engineering, East China University of Science and Technology (ECUST). He obtained his Doctoral Degree in 2012 from ECUST, and then worked at University of California, Riverside as a visiting scholar for one year. His research focuses on the design and preparation of functional nanomaterials and applications to the environmental fields, including (1) Enrichment and degradation of organic pollutants; (2) Recycling of organic wastewater: directed conversion of organic pollutants, hydrogen production of wastewater; (3) Seawater resource: seawater desalination, seawater hydrogen production, etc; (4) Resource of greenhouse gases. He has published more than 150 papers in SCI journals in these areas, which have been cited more than 15000 times (H-index: 68).
Supported by:
摘要:
超声辅助工艺在清洗、合成、催化等领域得到广泛应用, 展现出巨大的应用潜力. 然而, 人们对于超声辅助过程中反应机理的认识和理解仍然不足, 这在一定程度上限制了其进一步的推广应用. 此外, 当前对于超声辅助过程关键问题的研究仍然存在一些被忽略之处, 例如协同指数计算、成本评估等. 基于此, 将对超声辅助过程中的反应机理及这些被忽视的关键问题进行深入探讨和强调.
在深入探究空化和振动效应这两个超声核心特征的基础上, 本文全面回顾了超声辅助过程的研究现状, 详细阐述了空化和振动的基本原理, 并梳理了当前超声辅助工艺的研究进展. 同时, 从多个维度探讨了超声辅助工艺潜在的研究方向, 并提出了以“声-物-化”为指导理念, 旨在通过超声辅助工艺与其他领域的深度交叉融合, 实现催化过程中的重大突破. 特别是, 本文详细介绍了“压电耦合高级氧化实现废水修复同步高效产氢”这一新兴技术, 展现了超声在环境修复和能源生产领域的巨大潜力. 针对该技术, 本文提出以下展望: (1) 在解析超声辅助过程的反应机理时, 应明确识别并区分是否存在压电效应, 以深化对反应机制的理解, 提高超声辅助技术的效率和可控性; (2) 超声辅助降解过程的重点研究应聚焦于协同指数计算、成本评估、仪器参数规格说明和新污染物的扩展等方面, 以提升技术的实用性和经济性; (3) 鼓励将人工智能等前沿技术整合到超声辅助过程中, 以优化操作策略并获得最佳方案; (4) 除了降低成本外, 超声辅助过程还能促进高附加值产品的获取, 并通过能量回收和再利用的方式, 为降低碳排放做出贡献, 从而助力实现降碳目标. (5) 通过与不同领域的深度交叉, 鼓励超声辅助催化工艺的创新扩展, 特别是, 通过耦合压电催化和高级氧化技术, 实现废水修复过程中的能量和物质的回收, 进而实现废水的资源化利用. (6) 积极研发适用于超声辅助工艺机理研究的更精确的表征方法, 如原位表征技术等, 以减少或避免超声高能量输入对精密仪器的潜在损害. (7) 利用模拟和密度泛函理论计算等手段, 深入研究超声对催化过程的动态影响, 为超声辅助工艺的优化提供科学依据.
综上, 本文以“声-物理-化学”的跨学科视角, 深入剖析了超声辅助过程中的反应本质, 不仅加深对其反应机理的理解, 而且为超声辅助技术的广泛应用提供了理论支撑和新的思路.
刘文元, 李珺, 陈撰, 梁志燕, 杨博, 杜昆, 富蒋宸, 邢明阳. 揭示“声-物理-化学”的本质: 超声辅助过程中的空化和振动效应[J]. 催化学报, 2024, 61: 37-53.
Wenyuan Liu, Jun Li, Zhuan Chen, Zhiyan Liang, Bo Yang, Kun Du, Jiangchen Fu, Ali Reza Mahjoub, Mingyang Xing. Unveiling the "sono-physico-chemical" essence: Cavitation and vibration effects in ultrasound-assisted processes[J]. Chinese Journal of Catalysis, 2024, 61: 37-53.
Fig. 4. Principle (a) and application (b) of piezoelectric effect. (c) The application of cavitation and vibration effects in ultrasound-assisted processes. Reprinted with permission from Ref. [11]. Copyright 2011, WILEY-VCH. Reprinted with permission from Ref. [6]. Copyright 2020, Elsevier. Reprinted with permission from Ref. [10]. Copyright 2020, WILEY-VCH. Reprinted with permission from Ref. [24]. Copyright 2016, WILEY-VCH. Reprinted with permission from Ref. [12]. Copyright 2023, PNAS. Reprinted with permission from Ref. [13]. Copyright 2023, WILEY-VCH.
Fig. 5. (a) EPR spectra of defects in CoS2-com and CoS2-x at room temperature. (b) Long-term degradation of RhB in the CuPx (1 g L?1) system, the CoS2-1.5h (1 g L?1) system, the CoS2-1.5h (1 g L?1)/Fe3+ (0.1 g L?1) system and the CoS2-1.5h (1 g L?1)/Fe2+ (0.1 g L?1) system, respectively. (c) The mechanism of ROS generation and Fe ion circulation in the CoS2-1.5h system (red sphere: Co; white sphere: S; blue sphere: defect). Reprinted with permission from Ref. [10]. Copyright 2020, WILEY-VCH.
Fig. 6. (a) The reaction mechanism of the bubble cavity. Reprinted with permission from Ref. [68]. Copyright 2009, Elsevier. (b) Oxidation mechanism of oxidants in the US-oxidant systems. Reprinted with permission from Ref. [57]. Copyright 2023, Elsevier. (c) ARAC degradation kinetics, and corresponding pseudo-first order rate constant. Reprinted with permission from Ref. [58]. Copyright 2022, Elsevier. (d) Production of 7-hydroxycoumarin by bubble type and ultrasonic. (e) The reaction mechanism of nanobubble with ultrasonic cavitation. Reprinted with permission from Ref. [24]. Copyright 2023, Elsevier. (f) Proposed reaction schemes for degradation of organic matters by MgO@Z/UV/US system. (g) Comparison of different possible processes for the degradation of textile industrial effluent. Reprinted with permission from Ref. [69]. Copyright 2018, Elsevier. (h) Reaction mechanism of SEF process. Reprinted with permission from Ref. [64]. Copyright 2022, American Chemical Society.
Fig. 7. (a) Removal rate of HA and (b) removal kinetics of HA in a different reaction system. Reprinted with permission from Ref. [74]. Copyright 2021, Elsevier. (c) Effect of pH on the Malathion degradation. Reprinted with permission from Ref. [54]. Copyright 2021, Elsevier. (d) The performance of various processes in the intrinsic viscosity removal and COD removal from HPG. Reprinted with permission from Ref. [75]. Copyright 2023, Elsevier. (e) The cost ($) of removing 1 kg Malathion in different systems. Reprinted with permission from Ref. [54]. Copyright 2021, Elsevier. (f) Calculations of wastewater treatment cost for complete degradation of sulfide ions by cavitation processes combined with AOPs. Reprinted with permission from Ref. [76]. Copyright 2021, Elsevier. (g) Diagram of a photovoltaic PV system. Reprinted with permission from Ref. [78]. Copyright 2018, Elsevier. (h) Calorimetric energy efficiencies for different frequency and power settings. Reprinted with permission from Ref. [83]. Copyright 2023, Elsevier. (i) Comparison of pseudo-first-order removal rate constants (min-1) of PFASs observed in the 700 kHz, 250 W open system (Pd = 1250 W L-1) for the 24Mix-spiked deionized water, low TDS groundwater, and high TDS groundwater. Reprinted with permission from Ref. [84]. Copyright 2021, Elsevier.
Fig. 8. (a) Rate of H2 production of piezo-photocatalysis coupling activity. (b) Schematic diagram of piezo-photocatalysis for PbTiO3/CdS composites. Reprinted with permission from Ref. [91]. Copyright 2020, Elsevier. (c) 1O2 trapped by TEMP under different conditions. (d) Schematic diagram of the separation and migration of electron-hole pairs in pure BTO NCs with (left) and without (right) piezotronic effect. (e) Schematic diagram of the separation and migration of electron-hole pairs in Cu2-xO-BTO NCs with a piezotronic effect. Reprinted with permission from Ref. [88]. Copyright 2022, American Chemical Society. (f) Schematic diagram of band tilting of BTO-T under applied strain by laser-triggered micro-pressure and the corresponding piezo-catalytic reaction. Reprinted with permission from Ref. [92]. Copyright 2020, WILEY-VCH. (g) Structural changes and (h) difference charge density of SnS after applying compress (charge accumulation is in red and depletion in blue) (Green: Sn, Yellow: S). (i) Calculated DOS of SnS. Reprinted with permission from Ref. [25]. Copyright 2023, WILEY-VCH.
Fig. 9. (a) Schematic diagram of piezoelectricity coupling AOPs for H2 production from wastewater remediation. (b) The piezocatalytic H2 production rates of MoS2/Fe0 in solutions with different concentrations of NB. (c) The piezocatalytic H2 yield curves of MoS2/Fe0, MoS2/Fe0/PMS and MoS2/Fe0 (pH = 2.5) in NB solution. (d) The removal rates of TOC under different conditions. (e) Adsorption energy of different models. (f) Reaction energy in different pathways determined from the results of DFT. (g) The H2 yields of MoS2/Fe0/PMS piezocatalytic H2 production from actual soil remediation wastewater. Reprinted with permission from Ref. [12]. Copyright 2023, PNAS. (h) CO evolution of Co3S4/MoS2/PMS/US system under different conditions and (i) compared with homogeneous Fenton. (j) Calculated free energy diagram corresponding to the reaction path followed by carbonate conversion on the MoS2 and Co3S4/MoS2 catalysts. (k) Schematic diagram of selective production of CO from organic pollutants by piezocatalysis coupling AOPs. Reprinted with permission from Ref. [13]. Copyright 2023, WILEY-VCH.
Fig. 10. The development and important event of piezoelectric in catalysis. Reprinted with permission from Ref. [31] Copyright 2006, The American Association for the Advancement of Science. Reprinted with permission from Ref. [32]. Copyright 2010, Elsevier. Reprinted with permission from Ref. [107]. Copyright 2012, American Chemical Society. Reprinted with permission from Ref. [106]. Copyright 2012, Elsevier. Reprinted with permission from Ref. [110]. Copyright 2014, Macmillan Publishers Limited. Reprinted with permission from Ref. [26]. Copyright 2016, WILEY-VCH. Reprinted with permission from Ref. [111]. Copyright 2017, Elsevier. Reprinted with permission from Ref. [99]. Copyright 2020, WILEY-VCH. Reprinted with permission from Ref. [12]. Copyright 2023, PNAS. Reprinted with permission from Ref. [13]. Copyright 2023, WILEY-VCH.
|
[1] | 杨婷婷, 王彬, 朱剑豪, 夏杰祥, 李华明. 自牺牲型金属有机框架衍生In2S3多级孔结构纳米材料强化光催化性能[J]. 催化学报, 2024, 59(4): 204-213. |
[2] | 张亚萍, 徐继香, 周洁, 王磊. 金属-有机框架衍生的多功能光催化剂[J]. 催化学报, 2022, 43(4): 971-1000. |
[3] | 黄国城, 刘学艳, 施双汝, 李斯坦, 肖正涛, 甄伟前, 刘升卫, 王保强. 有序介孔TiO2纳米纤维及其串联光催化水处理-产氢性能[J]. 催化学报, 2020, 41(1): 50-61. |
[4] | 陈辉煌, 库建刚, 王连洲. 常温常压黑暗条件下用于环境修复的热催化:基本原理、发展和挑战[J]. 催化学报, 2019, 40(8): 1117-1134. |
[5] | 任亦杰, 曾德乾, Wee-Jun Ong. g-C3N4界面改性:掺杂金属硫化物构建新型异质结光催化剂的能源转换展望[J]. 催化学报, 2019, 40(3): 289-319. |
[6] | 方亚蓉, 郭彦炳. 铜基非贵金属异相催化剂在环境修复中的应用[J]. 催化学报, 2018, 39(4): 566-582. |
[7] | 赵鑫, 安庆大, 肖作毅, 翟尚儒, 施展. 一步法制备铁氧化物/氮改性氧化石墨/碳纳米管异质结及其用于催化活化过一硫酸氢钾降解亚甲基蓝模型染料[J]. 催化学报, 2018, 39(11): 1842-1853. |
[8] | 于婷婷, 柳丽芬, 杨凤林. 阳极TiO2/g-C3N4与阴极WO3/W纳米催化剂之间扩大的异质结自偏压系统去除污染物[J]. 催化学报, 2017, 38(2): 270-277. |
[9] | 戚克振, 程蓓, 余家国, Wingkei Ho. 二氧化钛基Z型光催化剂综述[J]. 催化学报, 2017, 38(12): 1936-1955. |
[10] | 崔言娟 . 原位合成具有高可见光催化活性的C3N4/CdS纳米复合材料[J]. 催化学报, 2015, 36(3): 372-379. |
[11] | 余长林, 周晚琴, 余济美, 刘鸿, 魏龙福. 设计和制备能量转换和环境净化的高效异质结光催化剂[J]. 催化学报, 2014, 35(10): 1609-1618. |
[12] | 塔里克;王雪松;陈春城;马万红;赵进才. 有毒难降解有机污染物的光催化降解[J]. 催化学报, 2007, 28(12): 1117-1122. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||