催化学报 ›› 2024, Vol. 61: 37-53.DOI: 10.1016/S1872-2067(24)60028-8

• 综述 • 上一篇    下一篇

揭示“声-物理-化学”的本质: 超声辅助过程中的空化和振动效应

刘文元a, 李珺a, 陈撰a, 梁志燕a, 杨博a, 杜昆a, 富蒋宸a, 邢明阳a,c,*()   

  1. a华东理工大学化学与分子工程学院, 先进材料重点实验室, 费林加诺贝尔奖科学家联合研究中心国际合作联合实验室, 材料生物学与动态化学前沿科学中心, 上海200237, 中国
    b塔比亚特莫德雷斯大学基础科学学院化学系, 德黑兰, 伊朗
    c华东理工大学上海多介质环境催化与资源化工程技术研究中心, 上海200237, 中国
  • 收稿日期:2024-02-13 接受日期:2024-04-07 出版日期:2024-06-18 发布日期:2024-06-20
  • 通讯作者: * 电子信箱: mingyangxing@ecust.edu.cn (邢明阳).
  • 基金资助:
    国家自然科学基金(22325602);国家自然科学基金(22176060);上海学术/技术研究带头人项目(23XD1421000)

Unveiling the "sono-physico-chemical" essence: Cavitation and vibration effects in ultrasound-assisted processes

Wenyuan Liua, Jun Lia, Zhuan Chena, Zhiyan Lianga, Bo Yanga, Kun Dua, Jiangchen Fua, Ali Reza Mahjoubb, Mingyang Xinga,c,*()   

  1. aKey Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
    bDepartment of Chemistry, Faculty of Basic Sciences, Tarbiat Modares University, Tehran, Iran
    cShanghai Engineering Research Center for Multi-media Environmental Catalysis and Resource Utilization, East China University of Science and Technology, Shanghai 200237, China
  • Received:2024-02-13 Accepted:2024-04-07 Online:2024-06-18 Published:2024-06-20
  • Contact: * E-mail: mingyangxing@ecust.edu.cn (M. Xing).
  • About author:Mingyang Xing (School of Chemistry and Molecular Engineering, East China University of Science and Technology) is the Professor, doctoral supervisor in the School of Chemistry and Molecular Engineering, East China University of Science and Technology (ECUST). He obtained his Doctoral Degree in 2012 from ECUST, and then worked at University of California, Riverside as a visiting scholar for one year. His research focuses on the design and preparation of functional nanomaterials and applications to the environmental fields, including (1) Enrichment and degradation of organic pollutants; (2) Recycling of organic wastewater: directed conversion of organic pollutants, hydrogen production of wastewater; (3) Seawater resource: seawater desalination, seawater hydrogen production, etc; (4) Resource of greenhouse gases. He has published more than 150 papers in SCI journals in these areas, which have been cited more than 15000 times (H-index: 68).
  • Supported by:
    National Natural Science Foundation of China(22325602);National Natural Science Foundation of China(22176060);Program of Shanghai Academic/Technology Research Leader(23XD1421000)

摘要:

超声辅助工艺在清洗、合成、催化等领域得到广泛应用, 展现出巨大的应用潜力. 然而, 人们对于超声辅助过程中反应机理的认识和理解仍然不足, 这在一定程度上限制了其进一步的推广应用. 此外, 当前对于超声辅助过程关键问题的研究仍然存在一些被忽略之处, 例如协同指数计算、成本评估等. 基于此, 将对超声辅助过程中的反应机理及这些被忽视的关键问题进行深入探讨和强调.
在深入探究空化和振动效应这两个超声核心特征的基础上, 本文全面回顾了超声辅助过程的研究现状, 详细阐述了空化和振动的基本原理, 并梳理了当前超声辅助工艺的研究进展. 同时, 从多个维度探讨了超声辅助工艺潜在的研究方向, 并提出了以“声-物-化”为指导理念, 旨在通过超声辅助工艺与其他领域的深度交叉融合, 实现催化过程中的重大突破. 特别是, 本文详细介绍了“压电耦合高级氧化实现废水修复同步高效产氢”这一新兴技术, 展现了超声在环境修复和能源生产领域的巨大潜力. 针对该技术, 本文提出以下展望: (1) 在解析超声辅助过程的反应机理时, 应明确识别并区分是否存在压电效应, 以深化对反应机制的理解, 提高超声辅助技术的效率和可控性; (2) 超声辅助降解过程的重点研究应聚焦于协同指数计算、成本评估、仪器参数规格说明和新污染物的扩展等方面, 以提升技术的实用性和经济性; (3) 鼓励将人工智能等前沿技术整合到超声辅助过程中, 以优化操作策略并获得最佳方案; (4) 除了降低成本外, 超声辅助过程还能促进高附加值产品的获取, 并通过能量回收和再利用的方式, 为降低碳排放做出贡献, 从而助力实现降碳目标. (5) 通过与不同领域的深度交叉, 鼓励超声辅助催化工艺的创新扩展, 特别是, 通过耦合压电催化和高级氧化技术, 实现废水修复过程中的能量和物质的回收, 进而实现废水的资源化利用. (6) 积极研发适用于超声辅助工艺机理研究的更精确的表征方法, 如原位表征技术等, 以减少或避免超声高能量输入对精密仪器的潜在损害. (7) 利用模拟和密度泛函理论计算等手段, 深入研究超声对催化过程的动态影响, 为超声辅助工艺的优化提供科学依据.
综上, 本文以“声-物理-化学”的跨学科视角, 深入剖析了超声辅助过程中的反应本质, 不仅加深对其反应机理的理解, 而且为超声辅助技术的广泛应用提供了理论支撑和新的思路.

关键词: 超声辅助工艺, 空化效应, 振动效应, 压电效应, 污染物降解

Abstract:

Ultrasound-assisted processes, widely applied in cleaning, synthesis, and catalysis, exhibit significant application potential, with their impact rooted in the interplay between ultrasound and the physicochemical properties of substances. Therefore, it is emphasized here to understand these processes through a "sono-physico-chemical" angle for a deeper comprehension of reaction mechanisms and broader application. Highlighting cavitation and vibration effects, the ultrasound-assisted chemistry processes are categorized. Cavitation is emphasized for pollutant degradation, while vibration is primarily applied for inducing the piezoelectric effect. Additionally, points that are easy to be ignored in the current ultrasonic assisted catalysis process are proposed, such as synergistic index calculations, cost assessments, etc. Furthermore, the latest innovative application of ultrasonic assisted process in wastewater recycling is introduced. Finally, the review advocates for the future integration of ultrasound-assisted processes into new catalytic processes or application scenarios.

Key words: Ultrasonic assisted process, Cavitation effect, Vibration effect, Piezoelectric effect, Pollutant degradation