催化学报 ›› 2024, Vol. 67: 112-123.DOI: 10.1016/S1872-2067(24)60141-5

• 论文 • 上一篇    下一篇

g-C3N4纳米片的边缘效应增强其CO2吸附和光催化还原性能

荆雪东a,b, 米晓云a(), 鲁巍b, 吕娜b, 杜仕文b, 王国栋c, 张振翼b()   

  1. a长春理工大学材料科学与工程学院, 吉林长春 130022
    b大连民族大学国家民委新能源与稀土资源利用重点实验室, 辽宁省光敏材料与器件重点实验室, 大连市低维半导体光电材料及应用重点实验室, 物理与材料工程学院, 辽宁大连 116600
    c中科和域(大连)空气系统技术有限公司, 辽宁大连 116600
  • 收稿日期:2024-07-17 接受日期:2024-09-07 出版日期:2024-11-30 发布日期:2024-11-30
  • 通讯作者: 米晓云,张振翼
  • 基金资助:
    国家自然科学基金(22472021);国家自然科学基金(U23A20102);国家自然科学基金(12074055);国家自然科学基金(51772041);国家自然科学基金(62005036);辽宁省“兴辽英才计划”领军人才项目(XLYC2202036);辽宁省“兴辽英才计划”青年拔尖人才项目(XLYC1807176);辽宁省优秀青年科学基金(2022-YQ-13);中央高校基本科研业务费(04442024069);大连市杰出青年科学基金(2018RJ05);辽宁省自然科学基金(2023-MS-132)

Edge effect-enhanced CO2 adsorption and photo-reduction over g-C3N4 nanosheet

Xuedong Jinga,b, Xiaoyun Mia(), Wei Lub, Na Lub, Shiwen Dub, Guodong Wangc, Zhenyi Zhangb()   

  1. aSchool of Material Science and Engineering, Changchun University of Science and Technology, Changchun 130022, Jilin, China
    bKey Laboratory of New Energy and Rare Earth Resource Utilization of State Ethnic Affairs Commission, Key Laboratory of Photosensitive Materials and Devices of Liaoning Province, Dalian Key Laboratory of Low-Dimensional Semiconductor Optoelectronic Materials and Applications, School of Physics and Materials Engineering, Dalian Minzu University, Dalian 116600, Liaoning, China
    cZOKEURHY (Dalian) Air Systems Technology Co., Ltd., Dalian 116600, Liaoning, China
  • Received:2024-07-17 Accepted:2024-09-07 Online:2024-11-30 Published:2024-11-30
  • Contact: Xiaoyun Mi, Zhenyi Zhang
  • Supported by:
    National Natural Science Foundation of China(22472021);National Natural Science Foundation of China(U23A20102);National Natural Science Foundation of China(12074055);National Natural Science Foundation of China(51772041);National Natural Science Foundation of China(62005036);Liaoning Revitalization Talents Program(XLYC2202036);Liaoning Revitalization Talents Program(XLYC1807176);Natural Science Foundation of Liaoning Province for Excellent Young Scholars(2022-YQ-13);Fundamental Research Funds for the Central Universities(04442024069);Dalian Science Foundation for Distinguished Young Scholars(2018RJ05);Natural Science Foundation of Liaoning Province(2023-MS-132)

摘要:

面对全球气候变暖形势的日益严峻, 以及对实现碳中和战略目标的迫切需求, 半导体光催化技术为将CO2转化为高附加值产品提供了一种切实可行的解决方案. 然而, 由于CO2分子具有较高的热力学稳定性, 其还原反应的动力学过程较为缓慢, 传统的半导体光催化剂往往表现出较低的光催化活性和产物选择性. CO2分子的有效吸附和电子的快速注入是实现高效光催化CO2还原过程的两大关键要素. 然而, 在单一催化剂体系中同时优化这两个过程, 仍面临着诸多挑战.

本文基于g-C3N4纳米片(NSs)独有的结构特点, 提出了一种边缘效应增强光催化CO2还原效率的策略, 在增强g-C3N4 NSs对CO2吸附能力的同时, 有效促进了光生电子向其表面吸附的CO2分子转移, 从而成功实现了光催化性能的显著提升. 密度泛函理论计算结果表明, g-C3N4 NSs边缘部分富含的氨基基团能够有效地吸附CO2分子, 且随后的光生电子注入过程也主要在这些边缘位置进行. 为同步优化这两个关键过程, 采用超声和梯度离心技术对传统热聚合法制备的g-C3N4 NSs进行尺寸调控, 将其分割成更小的片段. 结合扫描电子显微镜、原子力显微镜、X射线光电子能谱和傅里叶红外光谱等结果综合分析, 证实了g-C3N4 NSs的厚度和横向尺寸的逐渐减少显著增加了边缘氨基的暴露, 从而使g-C3N4 NSs展现出更强的边缘效应. 这些基团作为活性位点, 显著增强了g-C3N4 NSs对CO2的吸附能力. 随着g-C3N4 NSs的尺寸从几十微米减小到几百纳米, 其对CO2的吸附能力从4.74 cm3 g-1显著提升到8.56 cm3 g-1. 同时, g-C3N4 NSs尺寸的减小还有利于光生电子注入到吸附在边缘的CO2分子上. 在模拟太阳光照射的条件下, 经过优化的g-C3N4 NSs表现出较好的光催化CO2还原成CO性能, 相较于传统热聚合的g-C3N4 NSs, 催化性能提升近37倍, 相应地, 选择性也从8.6%提升至85.9%. 值得注意的是, 在边缘效应敏化后的g-C3N4 NSs上负载Pt助催化剂后, 光生电子在Pt上富集, 使得产物的选择性得到有效地调控, 主产物由CO转变为多电子主导的CH4, 实现了从85.9%的CO选择性到97.9%的CH4选择性的转变.

综上, 基于g-C3N4 NSs的边缘效应, 本文通过尺寸调控和表面修饰, 实现了g-C3N4 NSs的吸附能力和电子转移效率的双重优化, 进而提高了光催化性能和产物选择性, 为开发高效、环保的CO2转化技术提供了新思路.

关键词: 光催化剂, 二氧化碳还原, 二氧化碳吸附, 边缘效应, 氨基基团

Abstract:

Effective CO2 adsorption and fast electron injection are two crucial processes of photocatalysts for achieving high-efficiency CO2 photo-reduction. However, simultaneously enhancing these processes within a single photocatalyst remains a challenging task. Herein, we propose an intriguing edge effect based on the intrinsic atomic structure of g-C3N4 nanosheets (NSs) to enhance their CO2 adsorption and facilitate the transfer of photo-generated electrons to the adsorbed CO2. By cutting large pieces of g-C3N4 NSs into smaller fragments, the exposure of amino groups at the edges of its repeating tri-s-triazine units can be significantly increased. These edge-exposed amino groups serve as active sites for enhancing the CO2 capture capacity of g-C3N4 NSs. As we decrease the lateral size of g-C3N4 NSs from tens of micrometers to hundreds of nanometers, their CO2 adsorption capacity increases from 4.74 to 8.56 cm3 g-1. Reducing the size of g-C3N4 NSs also facilitates the transfer of photo-generated electrons to the edge-adsorbed CO2. Thus, our optimized g-C3N4 NSs with the edge effect exhibits a 37-fold enhancement in activity for CO2 photo-reduction compared to normal g-C3N4 NSs under simulated sunlight irradiation. Notably, by introducing Pt cocatalysts, we can control product selectivity from 85.9% CO to 97.9% CH4.

Key words: Photocatalysis, CO2 reduction, CO2 adsorption, Edge effect, Amino group