催化学报 ›› 2024, Vol. 67: 4-20.DOI: 10.1016/S1872-2067(24)60147-6
由晓钰a,b, 杨曹雨b,c, 李欣炜b,c(), 唐智勇a,b,c(
)
收稿日期:
2024-09-07
接受日期:
2024-09-16
出版日期:
2024-11-30
发布日期:
2024-11-30
通讯作者:
李欣炜,唐智勇
基金资助:
Xiaoyu Youa,b, Caoyu Yangb,c, Xinwei Lib,c(), Zhiyong Tanga,b,c(
)
Received:
2024-09-07
Accepted:
2024-09-16
Online:
2024-11-30
Published:
2024-11-30
Contact:
Xinwei Li, Zhiyong Tang
About author:
Xinwei Li (National Center for Nanoscience and Technology) received his Bachelor’s degree in 2016 from Luoyang Normal University, Master’s degree in 2019 from Jiangxi Normal University, and PhD degree in 2024 from Zhengzhou University. He carried out postdoctoral research at National Center for Nanoscience and Technology from 2024. His research interests currently focus on new materials and energy electrocatalysis with emphasis on design of new catalysts and reaction mechanism for small molecule conversion.Supported by:
摘要:
近几十年, 全球温室气体排放量急剧上升, 二氧化碳年排放量高达540亿吨, 达到历史最高水平, 已引起世界各国的高度关注. 面对全球能源需求的激增和环境问题的加剧, 寻找可持续的能源解决方案变得尤为重要. 二氧化碳转化为增值化学品是一个可行的策略. 电催化二氧化碳还原反应提供了一种将二氧化碳转化为高附加值化学品的方法, 对实现碳循环和促进绿色化学的发展具有重要意义. 同时, 多孔材料以其独特的物理化学性质, 在电催化二氧化碳还原反应中展示出巨大的潜力.
本文系统总结了多孔材料在电催化二氧化碳还原反应中的最新研究进展. 首先, 简要介绍了多孔材料的合成技术, 总结了多孔材料与电催化二氧化碳还原反应相结合的设计策略. 接着简要概述了电催化二氧化碳还原反应的反应机理, 以及不同目标产物的关键反应中间体. 然后, 通过重点介绍一些典型案例, 详细地阐述了多孔催化剂在电催化二氧化碳还原反应中富集效应、调节微环境pH值、稳定关键中间体、促进传质和扩散以及调节活性位点性质的作用. 最后, 讨论了当前电催化系统面临的主要挑战, 并提出了未来的研究方向: (1) 在材料合成方面, 实现多孔催化剂的可控合成, 可以为不同的反应需求提供保障; (2) 探究多孔催化剂的多尺度效应, 多级次结构有利于电催化二氧化碳还原为多碳产物; (3) 利用更多的理论计算手段, 构建准确的模型, 利用有限元模拟方法获得更多的反应条件参数, 同时结合大量的实验数据利用机器学习进行催化剂材料的预测; (4) 结合新兴的表征技术深入探索反应机理, 例如用于检测中间体的振动光谱(拉曼光谱和红外光谱), 用于监测远距离阶的散射方法(X-射线衍射和小角度X-射线散射), 以及用于探测局域电子和邻近结构的X-射线吸收光谱; (5) 探索电催化二氧化碳还原工业应用的发展, 综合考虑成本、催化性能和产品价值, 使其经济可行性达到最大.
综上, 本文系统地总结了多孔材料电催化二氧化碳还原的合成策略、反应机理、促进作用、具体应用以及目前存在的挑战, 为未来多孔催化剂的合成和电催化二氧化碳还原性能的优化提供了新见解, 将有益于化学和材料研究的广泛应用.
由晓钰, 杨曹雨, 李欣炜, 唐智勇. 多孔催化剂促进二氧化碳电还原[J]. 催化学报, 2024, 67: 4-20.
Xiaoyu You, Caoyu Yang, Xinwei Li, Zhiyong Tang. Porousizing catalysts for boosting CO2 electroreduction[J]. Chinese Journal of Catalysis, 2024, 67: 4-20.
Fig. 4. (a) Scheme of preparation process of mesoporous films with the aid of PS-b-PEO templates. (b) FE of the generated products and total current density from CO2 reduction on MP-Cu20 in an MEA configuration at full cell potential ranging from −2.6 to −3.1 V. (c,d) In situ Raman spectra of MP-Cu20 in CO2 saturated 0.1 mol L−1 KHCO3 aqueous solution at potential ranging from −0.19 to −0.99 V. (e) FEM-simulated CO concentration distribution in the interior of S-Cu20. (f) FEM-simulated C2H4. Concentration distribution in the interior of S-Cu20. (g) Reaction diagram for two *CO dimerization to form OCCO*. Reprinted with permission from Ref. [74]. Copyright 2024, John Wiley and Sons.
Fig. 5. (a) Computed concentration of C1 products and flux distribution (arrows) at the catalyst surface with a single-shell, three-shells and five-shells. (b) Computed concentration of C2+ products and flux distribution (arrows) at the catalyst surface with a single shell, three shells and five shells. Color scale, in mmol L−1. (c) Ratio of the selectivity of C2+/C1 as a function of the number of shells. (d) In situ ATR-SEIRAS of 4.4-shell Cu under different applied potentials. (e) In situ ATR-SEIRAS of commercial Cu powder under different applied potentials. (f) Normalized *CO peak area against the applied potential of 4.4-shell Cu and commercial Cu powder. Reprinted with permission from Ref. [75]. Copyright 2024, John Wiley and Sons.
Fig. 6. (a) Optimal FEethanol and corresponding ethanol to ethylene ratio for p-CuO-(7.0 nm), p-CuO-(12.5 nm) and p-CuO-(19.4 nm) catalysts. (b) Electron density difference plots for *CHCOH adsorbed on Cu(110) surface with (bottom) or without (top) additional *OH coverage. (c) Average surface OH− concentration over those CuO-based catalysts under eCO2RR condition. (d) Computational modeling of OH− species distribution under eCO2RR condition. Insets show the top view of OH− species distribution inside the nanocavity. Reprinted with permission from Ref. [49]. Copyright 2023, National Academy of Sciences.
Fig. 7. (a) Atomic-resolved high-angle annular dark field scanning transmission electron microscopy image of ER-CuNS. The inset is the size distribution of pores. (b) K+ concentration-dependent FE and C2+ current density of ER-CuNS at −1.45 V vs. reversible hydrogen electrode (RHE). K+ distribution on ER-CuNS (c) and F-CuNS (d). Models obtained from FEM simulation. Reprinted with permission from Ref. [85]. Copyright 2022, Springer Nature.
Fig. 8. (a) Scheme of fabrication of La-Cu HS. From left to right are the pH distribution in electrolytes near the surface of the solid sphere, hollow sphere, and within channels of the hollow sphere at −700 mA (b) and −900 mA (c). Reprinted with permission from Ref. [86]. Copyright 2024, Springer Nature.
Fig. 9. (a) Cross-sectional scanning electron microscopy (SEM) image of a PS:PFSA adlayer on silicon substrate. Modelled pH profile for 5 µm PFSA layer (b) and 5 µm insulating polymer nanoparticles (IPN):PFSA adlayer (c) over a 200-nm-thick catalyst. (d) SEM image of CuO-IO catalyst. (e) Potential-dependent FE for products over CuO-IO catalyst. (f) Comparison of CO FE. Reprinted with permission from Ref. [62]. Copyright 2023, Springer Nature. Reprinted with permission from Ref. [87]. Copyright 2019, Royal Society of Chemistry.
Fig. 10. (a) Scheme of carbon intermediates confined in nanocavities, which locally protect Cu oxidation state during eCO2RR. White: hydrogen; gray: carbon; red: oxygen; violet: copper. Operando Raman spectra of multi-hollow (b), fragmental (c) and solid (d) Cu2O as a function of reaction time. Reprinted with permission from Ref. [48]. Copyright 2020, American Chemical Society.
Fig. 11. (a) Scheme of the preparation process of porous Cu catalytic layer. (b) Product selectivity. SEM images of Cu2O-IOs in low-magnification (c) and high-magnification (d). (e) Steady-state total current densities at various potentials for Cu-IOs and Cu particles. Reprinted with permission from Ref. [51]. Copyright 2022, Springer Nature. Reprinted with permission from Ref. [93]. Copyright 2018, Elsevier.
Fig. 12. Schemes and SEM images of P-Cu2O-140 (a), P-Cu2O-240 (b) and P-Cu2O-340 (c). (d) CO2 transport process diagram of porous Cu2O/gas diffusion electrode (GDE) and nonporous Cu2O/GDE. (e) FE for C2+ products under different applied current densities over porous Cu2O and nonporous Cu2O samples. (f) Water contact angle of P-Cu2O-140, P-Cu2O-240 and P-Cu2O-340. (g) Scheme of “lotus” micro-nanostructure on a SnOx nanoporous film and its superhydrophobic behavior. Reprinted with permission from Ref. [42]. Copyright 2024, American Chemical Society. Reprinted with permission from Ref. [97]. Copyright 2024, American Chemical Society.
Fig. 13. (a) Scheme of preparation process for Ag1-N3/PCNC. (b) Design and synthesis of metalloporphyrin-derived 2D COFs. (c) Illustration of synthesis of NU-1000 and NU-1000-Sn. (d) SEM and elemental mapping of NU-1000-Sn. (e) Sn K-edge X-ray absorption near edge structure spectra of NU-1000-Sn, Sn foil, and SnO2. (f) Extended X-ray absorption fine structure fitting curve of the ditin sites in NU-1000-Sn. Reprinted with permission from Ref. [100]. Copyright 2023, American Chemical Society. Reprinted with permission from Ref. [58]. Copyright 2015, American Association for the Advancement of Science. Reprinted with permission from Ref. [102]. Copyright 2023, American Chemical Society.
Fig. 14. (a) Scheme of the synthetic process of CuSn-HAB. (b) Scheme of synthetic process of Cu2−xSe-T. SEM (c) and TEM (d) images of Cu2−xSe-450. (e) Operando Raman spectra taken after different eCO2RR times over the Cu2−xSe-450 at −0.74 V vs. RHE. (f) In situ attenuated total reflection infrared spectra taken after different eCO2RR times over Cu2−xSe-450 in 0.5 mol L−1 KHCO3 solution. Reprinted with permission from Ref. [106]. Copyright 2023, American Chemical Society. Reprinted with permission from Ref. [60]. Copyright 2023, John Wiley and Sons.
Catalyst | Product | Current density (mA cm‒2) | FE (%) | Function | Ref. |
---|---|---|---|---|---|
S-Cu20 | C2H4 | 368 | 85.6 | enrichment effect | [74] |
4,4-shell Cu | C2H4 | 528.3 | 58.7 | enrichment effect | [75] |
p-CuO-12.5 | C2H5OH | 500 | 44 | enrichment effect | [49] |
Cu2O@CS | CH3COOH | 328 | 38.5 | enrichment effect | [77] |
ER-CuNS | C2+ | 560 | 83.7 | enrichment effect | [85] |
La-Cu HS | C2+ | 775.8 | 86.2 | modulating microenvironmental pH | [86] |
COF-PSFA | C2+ | 200 | 75 | modulating microenvironmental pH | [62] |
CuO-IO | CO | — | 72.5 | modulating microenvironmental pH | [87] |
multi-hollow Cu2O | C2+ | 267 | 75.2 | stabilizing key species | [48] |
p-CuSiO3/CuO | C2+ | 400 | 91.7 | stabilizing key species | [91] |
porous Cu | C2H4 | 420 | 52.5 | facilitating mass transfer and diffusion | [51] |
p-Cu2O-240 | C2H4 | 753 | 53.3 | facilitating mass transfer and diffusion | [42] |
SnOx nanoporous | CO and HCOOH | — | 90 | facilitating mass transfer and diffusion | [97] |
Ag1-N3/PCNC | CO | 7.6 | 95 | tuning the nature of active sites | [100] |
COF-Co | CO | 5 | 90 | tuning the nature of active sites | [58] |
NU-1000-Sn | CO | 260 | 100 | tuning the nature of active sites | [102] |
CuSn-HAB | C2H5OH | 68 | 56.2 | tuning the nature of active sites | [106] |
Table 1 Representative electrocatalyst of the eCO2RR and some related information.
Catalyst | Product | Current density (mA cm‒2) | FE (%) | Function | Ref. |
---|---|---|---|---|---|
S-Cu20 | C2H4 | 368 | 85.6 | enrichment effect | [74] |
4,4-shell Cu | C2H4 | 528.3 | 58.7 | enrichment effect | [75] |
p-CuO-12.5 | C2H5OH | 500 | 44 | enrichment effect | [49] |
Cu2O@CS | CH3COOH | 328 | 38.5 | enrichment effect | [77] |
ER-CuNS | C2+ | 560 | 83.7 | enrichment effect | [85] |
La-Cu HS | C2+ | 775.8 | 86.2 | modulating microenvironmental pH | [86] |
COF-PSFA | C2+ | 200 | 75 | modulating microenvironmental pH | [62] |
CuO-IO | CO | — | 72.5 | modulating microenvironmental pH | [87] |
multi-hollow Cu2O | C2+ | 267 | 75.2 | stabilizing key species | [48] |
p-CuSiO3/CuO | C2+ | 400 | 91.7 | stabilizing key species | [91] |
porous Cu | C2H4 | 420 | 52.5 | facilitating mass transfer and diffusion | [51] |
p-Cu2O-240 | C2H4 | 753 | 53.3 | facilitating mass transfer and diffusion | [42] |
SnOx nanoporous | CO and HCOOH | — | 90 | facilitating mass transfer and diffusion | [97] |
Ag1-N3/PCNC | CO | 7.6 | 95 | tuning the nature of active sites | [100] |
COF-Co | CO | 5 | 90 | tuning the nature of active sites | [58] |
NU-1000-Sn | CO | 260 | 100 | tuning the nature of active sites | [102] |
CuSn-HAB | C2H5OH | 68 | 56.2 | tuning the nature of active sites | [106] |
|
[1] | 严靖, 倪嘉琪, 孙宏丽, 苏陈良, 刘彬. 原位衰减全反射表面增强红外光谱示踪单原子催化二氧化碳电还原反应中间体的研究进展[J]. 催化学报, 2024, 62(7): 32-52. |
[2] | 王凯琪, 何益明. 金属钛酸盐基压电催化剂的最新进展: 改善压电性能和调节载流子输运以提高催化性能[J]. 催化学报, 2024, 61(6): 111-134. |
[3] | 邹心仪, 顾均. 酸性条件下二氧化碳高效电还原策略[J]. 催化学报, 2023, 52(9): 14-31. |
[4] | 李轩, 蒋兴星, 孔艳, 孙建桔, 胡琪, 柴晓燕, 杨恒攀, 何传新. GaN/In2O3的界面工程用于高效电催化CO2还原制备甲酸[J]. 催化学报, 2023, 50(7): 314-323. |
[5] | 陈宇卓, 王浩, 陆冰, 易倪, 曹亮, 王勇, 毛善俊. 用于高精度催化性能预测的精细结构敏感型深度学习框架[J]. 催化学报, 2023, 50(7): 284-296. |
[6] | 卞磊, 张紫阳, 田昊, 田娜娜, 马智, 王中利. 具有丰富晶界的铜催化剂在气-液平衡扩散电极上高效电还原CO2制C2H4[J]. 催化学报, 2023, 54(11): 199-211. |
[7] | 付先彪. 关于电还原硝酸根反应的思考[J]. 催化学报, 2023, 53(10): 8-12. |
[8] | 谢起贤, 任丹, 柏力晨, 格日乐, 周雯慧, 白璐, 谢微, 王军虎, Michael Grätzel, 罗景山. 镍铁层状双金属氢氧化物在不同pH电解液体系中的析氧反应[J]. 催化学报, 2023, 44(1): 127-138. |
[9] | 覃思纳, 魏笛野, 魏杰, 林嘉盛, 陈清奇, 吴元菲, 金怀洲, 张华, 李剑锋. 表面增强拉曼光谱原位捕获Pt-NiO界面水煤气变换反应中的碳酸盐中间物种[J]. 催化学报, 2022, 43(8): 2010-2016. |
[10] | 何铭, 徐冰君, 陆奇. 结合原位拉曼光谱与反应性研究锡与氧化锡催化剂电催化二氧化碳还原中表面物种的作用[J]. 催化学报, 2022, 43(6): 1473-1477. |
[11] | 苏海胜, 常晓侠, 徐冰君. 表面增强振动光谱在电催化领域的运用: 基本原理、挑战和展望[J]. 催化学报, 2022, 43(11): 2757-2771. |
[12] | 武建栋, 赵晓, 崔小强, 郑伟涛. 新兴的二维金属烯: 结构调控和电催化应用进展[J]. 催化学报, 2022, 43(11): 2802-2814. |
[13] | 吴丽文, 黄茉莉, 杨云霄, 黄逸凡. 金属/聚电解质界面的原位电化学表面增强拉曼光谱[J]. 催化学报, 2022, 43(11): 2820-2825. |
[14] | 洪峰, 王升扬, 张军营, 付俊红, 蒋齐可, 孙科举, 黄家辉. 金属载体强相互作用增强Au/TiO2催化剂在3-硝基苯乙烯选择性加氢反应的活性[J]. 催化学报, 2021, 42(9): 1530-1537. |
[15] | 张庆贺, 夏阳, 曹少文. “反应环境磷酸化”加速g-C3N4/碳纸气-液-固三相界面光催化CO2还原[J]. 催化学报, 2021, 42(10): 1667-1676. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||