催化学报 ›› 2024, Vol. 67: 4-20.DOI: 10.1016/S1872-2067(24)60147-6

• 综述 • 上一篇    下一篇

多孔催化剂促进二氧化碳电还原

由晓钰a,b, 杨曹雨b,c, 李欣炜b,c(), 唐智勇a,b,c()   

  1. a郑州大学河南先进技术研究院, 河南郑州 450003
    b国家纳米科学中心, 中国科学院纳米科学卓越中心, 中国科学院纳米系统与多级次制造重点实验室, 北京 100190
    c中国科学院大学, 北京 100190
  • 收稿日期:2024-09-07 接受日期:2024-09-16 出版日期:2024-11-30 发布日期:2024-11-30
  • 通讯作者: 李欣炜,唐智勇
  • 基金资助:
    中科院战略性先导研究项目(XDB36000000);国家重点研发计划(2021YFA1200302);国家重点研发计划(2022YFA1205400);国家自然科学基金(92356304);国家自然科学基金(92056204)

Porousizing catalysts for boosting CO2 electroreduction

Xiaoyu Youa,b, Caoyu Yangb,c, Xinwei Lib,c(), Zhiyong Tanga,b,c()   

  1. aHenan institute of Advanced Technology, Zhengzhou University, Zhengzhou 450003, Henan, China.
    bCAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
    cUniversity of Chinese Academy of Sciences, Beijing 100190, China
  • Received:2024-09-07 Accepted:2024-09-16 Online:2024-11-30 Published:2024-11-30
  • Contact: Xinwei Li, Zhiyong Tang
  • About author:Xinwei Li (National Center for Nanoscience and Technology) received his Bachelor’s degree in 2016 from Luoyang Normal University, Master’s degree in 2019 from Jiangxi Normal University, and PhD degree in 2024 from Zhengzhou University. He carried out postdoctoral research at National Center for Nanoscience and Technology from 2024. His research interests currently focus on new materials and energy electrocatalysis with emphasis on design of new catalysts and reaction mechanism for small molecule conversion.
    Zhiyong Tang (National Center for Nanoscience and Technology) obtained his PhD degree in 1999 from the Chinese Academy of Sciences. Following that, he went to Swiss Federal Institute of Technology Zurich, Switzerland, and to the University of Michigan, USA, for his postdoctoral research. In November of 2006, he joined the National Center for Nanoscience and Technology in China and took up a full professor position. His current research interests focus on assembly, optical properties of functional nanomaterials, as well as their applications in energy, catalysis, separation, and sensing.
  • Supported by:
    Strategic Priority Research Program of Chinese Academy of Sciences(XDB36000000);National Key R&D Program of China(2021YFA1200302);National Key R&D Program of China(2022YFA1205400);National Natural Science Foundation of China(92356304);National Natural Science Foundation of China(92056204)

摘要:

近几十年, 全球温室气体排放量急剧上升, 二氧化碳年排放量高达540亿吨, 达到历史最高水平, 已引起世界各国的高度关注. 面对全球能源需求的激增和环境问题的加剧, 寻找可持续的能源解决方案变得尤为重要. 二氧化碳转化为增值化学品是一个可行的策略. 电催化二氧化碳还原反应提供了一种将二氧化碳转化为高附加值化学品的方法, 对实现碳循环和促进绿色化学的发展具有重要意义. 同时, 多孔材料以其独特的物理化学性质, 在电催化二氧化碳还原反应中展示出巨大的潜力.

本文系统总结了多孔材料在电催化二氧化碳还原反应中的最新研究进展. 首先, 简要介绍了多孔材料的合成技术, 总结了多孔材料与电催化二氧化碳还原反应相结合的设计策略. 接着简要概述了电催化二氧化碳还原反应的反应机理, 以及不同目标产物的关键反应中间体. 然后, 通过重点介绍一些典型案例, 详细地阐述了多孔催化剂在电催化二氧化碳还原反应中富集效应、调节微环境pH值、稳定关键中间体、促进传质和扩散以及调节活性位点性质的作用. 最后, 讨论了当前电催化系统面临的主要挑战, 并提出了未来的研究方向: (1) 在材料合成方面, 实现多孔催化剂的可控合成, 可以为不同的反应需求提供保障; (2) 探究多孔催化剂的多尺度效应, 多级次结构有利于电催化二氧化碳还原为多碳产物; (3) 利用更多的理论计算手段, 构建准确的模型, 利用有限元模拟方法获得更多的反应条件参数, 同时结合大量的实验数据利用机器学习进行催化剂材料的预测; (4) 结合新兴的表征技术深入探索反应机理, 例如用于检测中间体的振动光谱(拉曼光谱和红外光谱), 用于监测远距离阶的散射方法(X-射线衍射和小角度X-射线散射), 以及用于探测局域电子和邻近结构的X-射线吸收光谱; (5) 探索电催化二氧化碳还原工业应用的发展, 综合考虑成本、催化性能和产品价值, 使其经济可行性达到最大.

综上, 本文系统地总结了多孔材料电催化二氧化碳还原的合成策略、反应机理、促进作用、具体应用以及目前存在的挑战, 为未来多孔催化剂的合成和电催化二氧化碳还原性能的优化提供了新见解, 将有益于化学和材料研究的广泛应用.

关键词: 多孔纳米材料, 电催化二氧化碳还原, 增强, 微环境pH, 传质

Abstract:

Facing soaring global energy demand and intensifying environmental problems, the search for sustainable energy alternatives has become imperative. The efficient conversion of carbon dioxide (CO2), one of the primary greenhouse gases, plays the crucial role in mitigating global climate change. The electrocatalytic CO2 reduction reaction (eCO2RR) provides an effective solution for its conversion into high-value-added chemicals, promoting the development of the carbon cycle and green chemistry. Porous materials of distinctive physicochemical properties have demonstrated substantial potential in eCO2RR. In this review, various strategies of porousizing catalysts for boosted eCO2RR are briefly summarized. Subsequently, the functionalities of porous materials including enrichment effect, modulating microenvironmental pH, stabilizing key species, facilitating mass transfer and tuning the nature of active sites to improve the efficiency and selectivity of eCO2RR are categorized. Furthermore, we discuss the principal challenges confronting current electrocatalytic systems and propose future research directions. Insights from this review are expected to benefit broad communities of chemical and material research for rationalizing porous electrocatalysts and optimizing eCO2RR performances.

Key words: Porous nanomaterials, Electrocatalytic carbon dioxide reduction, Enrichment, Local pH, Mass transfer