催化学报 ›› 2025, Vol. 75: 192-203.DOI: 10.1016/S1872-2067(25)64744-9

• 论文 • 上一篇    

钴单原子-磷酸功能化还原氧化石墨烯/苝四羧酸纳米片异质结用于高效光催化生产过氧化氢

王啟航a,1, 孟利b,1, 李卓a,*(), 杨卓然b, 汤意南a, 余浪a, 李志君a, 孙建辉a, 井立强a,*()   

  1. a黑龙江大学化学与材料科学学院, 功能无机材料化学教育部重点实验室, 催化技术国际联合研究中心, 黑龙江哈尔滨 150080
    b哈尔滨工程大学材料科学与化学工程学院超轻材料与表面技术教育部重点实验室, 黑龙江哈尔滨 150001
  • 收稿日期:2025-03-15 接受日期:2025-04-21 出版日期:2025-08-18 发布日期:2025-07-22
  • 通讯作者: *电子信箱: lizhuo9410@hlju.edu.cn (李卓), jinglq@hlju.edu.cn (井立强).​
  • 作者简介:1共同第一作者.
  • 基金资助:
    国家重点研发计划(2024YFF0506202);国家自然科学基金(U2102211);国家自然科学基金(U23A20576);国家自然科学基金(22402054);黑龙江省优秀青年科学基金(YQ2024B009);黑龙江省博士后科学基金(LBH-Z24257);黑龙江大学基本科研业务费(2023-KYYWF-1483)

Cobalt single atom-phosphate functionalized reduced graphene oxide/perylenetetracarboxylic acid nanosheet heterojunctions for efficiently photocatalytic H2O2 production

Wang Qihanga,1, Meng Lib,1, Li Zhuoa,*(), Yang Zhuoranb, Tang Yinana, Yu Langa, Li Zhijuna, Sun Jianhuia, Jing Liqianga,*()   

  1. aKey Laboratory of Functional Inorganic Materials Chemistry (Ministry of Education), School of Chemistry and Materials Science, International Joint Research Center and Laboratory for Catalytic Technology, Heilongjiang University, Harbin 150080, Heilongjiang, China
    bKey Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, Heilongjiang, China
  • Received:2025-03-15 Accepted:2025-04-21 Online:2025-08-18 Published:2025-07-22
  • Contact: *E-mail: lizhuo9410@hlju.edu.cn (Z. Li), jinglq@hlju.edu.cn (L. Jing).​
  • About author:1Contributed equally to this work.
  • Supported by:
    National Key R&D Program of China(2024YFF0506202);National Natural Science Foundation of China(U2102211);National Natural Science Foundation of China(U23A20576);National Natural Science Foundation of China(22402054);Outstanding Youth Science Foundation of Heilongjiang Province(YQ2024B009);Heilongjiang Province Postdoctoral Science Foundation project(LBH-Z24257);Basic Research Fund of Heilongjiang University in Heilongjiang Province(2023-KYYWF-1483)

摘要:

过氧化氢(H2O2)作为全球最重要的化学品之一, 在化工生产、工业漂白和医疗消毒中具有广泛应用. 目前工业蒽醌法生产H2O2存在过程复杂、能耗高、副产物有毒等问题. 光催化生产H2O2是以太阳能为驱动力, 以水和氧气为原料, 因其绿色可持续特性而备受关注. 然而, 该技术发展仍受光催化剂光生载流子分离效率低、水氧化动力学缓慢、氧气吸附/活化能力不足等问题影响. 有机半导体材料(如苝系材料)虽具有宽光谱吸收和结构可调等优势, 但其还原电位难以满足2e-氧还原反应(ORR)的热力学要求, 且电荷分离能力与催化位点不足. 本文针对上述瓶颈, 提出一种新型单原子光催化剂设计策略, 为高效光催化生产H2O2提供了新思路.

本研究预先将酞菁钴(CoPc)组装在磷酸功能化的还原氧化石墨烯(rGO-P)上, 经热处理转化构建具有Co-N4配位结构且均匀分散的单原子材料(Co@rGO-P), 进一步采用原位生长法将其与苝四甲酸(PTA)纳米片复合, 成功制备Co@rGO-P/PTA异质结的单原子光催化剂. 实验结果表明: (1) rGO-P通过氢键作用促进CoPc分子均匀分散, 抑制高温热解过程中Co原子团聚, 实现较高负载量(1.2 wt%)Co单原子锚定; (2) 优化后的Co@rGO-P/PTA在纯水中H2O2产率达1.4 mmol g-1 h-1, 较原始PTA提升12.9倍, 其性能优于已报道的苝基材料; (3) 飞秒瞬态吸收光谱揭示, “磷酸桥”介导的界面电子通道显著加速了光生电子从PTA向rGO转移, 随后定向迁移至Co-N4位点; (4) 原位红外与理论计算证实, Co-N4位点作为氧吸附活化中心, 通过降低*OOH中间体形成的能垒、抑制O=O键断裂, 促进两步单电子ORR路径, 提升H2O2的选择性和产率. 此外, rGO的二维层状结构与PTA纳米片紧密耦合, 形成2D/2D异质界面, 有效延长载流子寿命, 协同增强光吸收与电荷分离效率.

综上, 本工作提出的“单原子-功能化石墨烯-界面电子桥”策略可拓展至其他金属有机框架体系, 通过精准调控单原子配位环境与界面电子通道, 为开发高效光催化体系提供了新思路.

关键词: 单原子光催化剂, 苝四甲酸纳米片, 磷酸功能化石墨烯, 电荷分离, 过氧化氢生产

Abstract:

The production of hydrogen peroxide (H2O2) via artificial photosynthesis using single-atom semiconductor photocatalysts represents a promising green and sustainable technology. However, its efficiency is still limited by sluggish water oxidation kinetics, poor photogenerated charge separation, and insufficient O2 adsorption and activation capabilities. Herein, uniformly dispersed single-atom catalysts (SACs) with a Co-N4 coordination structure have been synthesized by thermally transforming cobalt phthalocyanine (CoPc) assemblies pre-anchored on phosphate functionalized reduced graphene oxide (Co@rGO-P), and then used to construct heterojunctions with perylenetetracarboxylic acid (PTA) nanosheets for photocatalytic H2O2 production by an in-situ growth method. The optimized Co@rGO-P/PTA achieved an H2O2 production rate of 1.4 mmol g-1 h-1 in pure water, with a 12.9-fold enhancement compared to pristine PTA nanosheets exhibiting competitive photoactivity among reported perylene-based materials. Femtosecond transient absorption spectra, in-situ diffuse reflectance infrared Fourier transform spectra and theoretical calculations reveal that the exceptional performance is attributed to the enhanced electron transfer from PTA to rGO via the phosphate bridge and then to the Co-N4, and to the promoted O2 adsorption and activation at Co-N4 active sites. This work provides a feasible and effective strategy for designing highly efficient single-atom semiconductor heterojunction photocatalysts for H2O2 production.

Key words: Single-atom photocatalyst, Perylenetetracarboxylic acid nanosheetPhosphate-functionalized reduced, graphene oxide, Charge separation, H2O2 production