催化学报 ›› 2025, Vol. 78: 324-335.DOI: 10.1016/S1872-2067(25)64805-4

• 论文 • 上一篇    下一篇

两步退火法合成超细L10 PtFeZn金属间化合物用于氧还原: 合金化与有序化步骤的解耦

夏云飞a, 刘博a, 张子钰a, 赵子刚b, 郭盼a, 林思a, 刘冰a, 王炎a, 张云龙a,*(), 赵磊a,*(), 王利光c,*(), 王振波a,*()   

  1. a哈尔滨工业大学化工与化学学院, 空间电源全国重点实验室, 新能源转换与储存关键材料技术工业和信息化部重点实验室, 黑龙江哈尔滨 150001
    b哈尔滨工程大学材料科学与化学工程学院, 超轻材料与表面技术教育部重点实验室, 黑龙江哈尔滨 150001
    c浙江大学化学工程与生物工程学院, 浙江杭州 310058
  • 收稿日期:2025-05-27 接受日期:2025-07-02 出版日期:2025-11-18 发布日期:2025-10-14
  • 通讯作者: *电子信箱: wangzhb@hit.edu.cn (王振波), 20220123@hit.edu.cn (张云龙), leizhao@hit.edu.cn (赵磊), wanglg@zju.edu.cn (王利光).
  • 基金资助:
    国家自然科学基金委员会(U23A20573);国家自然科学基金委员会(22409041);国家自然科学基金委员会(22075062);山东省重点研发计划(2022CXGC010305);黑龙江省“头雁”团队(HITTY-20190033);黑龙江省自然科学基金(LH2024B013);中央高校基本科研业务费(FRFCU5710051922);广东省基础与应用基础研究基金(2023B1515120022);广东省基础与应用基础研究基金(2022B1515120001);深圳市科技创新计划(RCBS20231211090522040);深圳市科技创新计划(KJZD20240903095610014);深圳市科技创新计划(KJZD20240903095712017);深圳市高层次创新创业团队(KQTD20210811090045006);浙江省自然科学基金委员会(LR24E020001);浙江省领军型创新创业团队引进计划(2023R01007)

Ultrafine L10 PtFeZn intermetallics via a two-step annealing process for oxygen reduction reaction: Decoupling alloying and ordering stages

Yun-Fei Xiaa, Bo Liua, Zi-Yu Zhanga, Zi-Gang Zhaob, Pan Guoa, Si Lina, Bing Liua, Yan Wanga, Yun-Long Zhanga,*(), Lei Zhaoa,*(), Li-Guang Wangc,*(), Zhen-Bo Wanga,*()   

  1. aState Key Laboratory of Space Power-Sources, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China
    bKey Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, Heilongjiang, China
    cCollege of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, Zhejiang, China
  • Received:2025-05-27 Accepted:2025-07-02 Online:2025-11-18 Published:2025-10-14
  • Contact: *E-mail: wangzhb@hit.edu.cn (Z.-B. Wang), 20220123@hit.edu.cn (Y.-L. Zhang), leizhao@hit.edu.cn (L. Zhao), wanglg@zju.edu.cn (L. G. Wang).
  • Supported by:
    National Natural Science Foundation of China(U23A20573);National Natural Science Foundation of China(22409041);National Natural Science Foundation of China(22075062);Key Research and Development Program of Shandong Province(2022CXGC010305);Heilongjiang Touyan Team(HITTY-20190033);Natural Science Foundation of Heilongjiang Province of China(LH2024B013);Fundamental Research Funds for the Central Universities(FRFCU5710051922);Guangdong Basic and Applied Basic Research Foundation(2023B1515120022);Guangdong Basic and Applied Basic Research Foundation(2022B1515120001);Shenzhen Science and Technology Innovation Program(RCBS20231211090522040);Shenzhen Science and Technology Innovation Program(KJZD20240903095610014);Shenzhen Science and Technology Innovation Program(KJZD20240903095712017);High-Level Professional Team in Shenzhen(KQTD20210811090045006);Zhejiang Provincial Natural Science Foundation of China(LR24E020001);Leading Innovative and Entrepreneur Team Introduction Program of Zhejiang(2023R01007)

摘要:

质子交换膜燃料电池(PEMFCs)是实现人类经济社会“双碳”目标最具潜力的技术手段之一, 其大规模商业化应用仍受到诸多技术条件的制约, 其中突出表现为阴极氧还原反应(ORR)动力学缓慢且反应环境严苛. 当前产业化的阴极ORR催化剂以纯Pt纳米颗粒为主, 而贵金属Pt的资源稀缺性极大提高了PEMFCs的制造成本. Pt与3d过渡金属有序合金化的策略是降低PEMFCs中Pt用量、并提升其ORR催化活性的最常用策略, 但其合金有序化过程中必需的高温退火处理会不可避免地造成合金纳米颗粒的烧结, 从而降低活性Pt的利用率并影响其催化性能.

本工作以ZIF-8衍生的Zn/N共掺杂石墨碳(ZnNC)作为多功能载体, 将其分散在水分散剂中, 同时添加Pt盐和Fe盐, 通过浸渍蒸干法以及随后的两步退火工艺(H2/Ar, 600和800 ℃), 抑制纳米颗粒的高温烧结, 成功得到均匀担载在ZnNC载体上的超细PtFeZn三元有序合金(~3.47 nm). 通过调控载体(vs. XC72)、退火工艺(单独600或800 ℃)的系统实验设计, 结合X射线衍射、球差电镜和X-射线吸收光谱等物理表征以及理论计算分析, 发现ZnNC载体中的Zn2+离子可以通过Lewis酸碱相互作用(LABI), 促进PtCl62-在ZnNC原子层级的均匀分布, 而后通过金属-载体相互作用(SMSI), 在低温段600 ℃的退火条件下产生超细无序PtFe合金(~2.10 nm), 后续800 ℃高温段则加速了载体中的Zn向PtFe体相中的扩散, 并最终完成了合金由无序相向有序相的转变. 所得ZnNC-15PtFeZn的初始质量活性为0.769 mA/μgPt, 30000圈加速应力(AST)测试后活性保持率为61.7%. 更为突出的是, 催化剂用于MEA阴极催化剂时, 以0.05 mg/cm2的铂载量(商业催化剂的一半)实现了优于商业铂碳的功率性能(2.018 W/cm2, H2-O2), 表明了该催化剂在低铂PEMFC中的巨大应用前景. 密度泛函理论计算表明, L10型PtZn (-0.550 eV/atom)的合金生成焓显著低于L10型PtFe (-0.236 eV/atom), 促使载体中的Zn扩散到PtFe中形成三元合金, 理论计算同样证实了L10型PtFeZn三元合金的稳定性(合金Energy above Hull ≈ 52 meV/atom, 属于典型亚稳态相). ORR自由能台阶图表明, ZnNC-15PtFeZn存在三种ORR反应路线: (1) PtFeZn(111)平面上的直接4e-路径(主要路径); (2) 退火载体表面形成的单原子Fe-N4活性位点上的直接4e-路径(反应较慢); (3) Fe-N4活性位点生成的中间产物H2O2溢流到PtFeZn(111)上, 最终还原成H2O的间接4e-路径(协同催化路径). 此外, PtFeZn(111)在酸性介质中表面金属空位形成能(Vvac-M)的计算表明, Zn的掺入使得Pt和Fe的空位形成能分别提升0.58和0.06 eV, 从而提高了ZnNC-15PtFeZn在老化过程中的稳定性.

综上, 本文利用水浸渍法合成了均匀担载在ZnNC载体的超细PtFeZn三元有序纳米颗粒, 规避了常规高温退火带来的纳米颗粒烧结的问题, 并将催化剂成功用于低铂PEMFC. 此外, 该方法绿色温和可放大, 可以为ORR及其他电催化领域三元乃至多元Pt合金的合成和机理分析提供较有价值的借鉴.

关键词: 氧还原, Zn-NC载体, PtFeZn有序合金, 两步退火工艺, 强金属载体作用

Abstract:

In this paper, we report the design of ultrafine ordered PtFeZn ternary intermetallics uniformly supported on ZIF-8-derived Zn,N-codoped graphitic carbon (ZnNC) via a green aqueous impregnation method followed by a two-step annealing protocol (H2/Ar, 600 and 800 ℃) to circumvent the sintering issues imposed by conventional thermodynamics. Physical characterizations (X-ray diffraction, high-angle annular dark-field scanning transmission electron microscopy, X-ray absorption spectroscopy) and theoretical calculations reveal that low-temperature annealing at 600 ℃ stabilizes sub-nano disordered PtFe alloys via the strong metal-support interactions (SMSI) between Zn in ZnNC and Pt precursors, while high-temperature treatment at 800 ℃ promotes Zn diffusion from the support into the alloy bulk and simultaneously triggers the disorder-to-order phase transition. The as-prepared ZnNC-15PtFeZn exhibits an initial mass activity of 0.769 mA/μgPt and retains 61.7% of its activity after 30000 cycles of accelerated stress testing (AST). Notably, when used as a cathode catalyst in MEA, ZnNC-15PtFeZn achieves superior power density (2.018 W/cm2 under H2-O2) at half the Pt loading (0.05 mg/cm2) of state-of-the-art commercial Pt/C, highlighting its potential for low-Pt PEMFCs. Density functional theory confirms that Fe enhances ORR activity via ligand effects, while Zn strengthens Pt-Fe/Zn bonding (elevating vacancy formation energies), thereby improving structural stability. This mild, scalable aqueous impregnation strategy offers a general approach for synthesizing multi-component ordered alloys in electrocatalysis.

Key words: Oxygen reduction reaction, Zn-NC support, PtFeZn ternary intermetallic, Two-step annealing, Strong-metal support interaction