催化学报 ›› 2025, Vol. 77: 45-69.DOI: 10.1016/S1872-2067(25)64788-7
亓文慧a, 李秀艳b, 顾少楠a,*(), 孙彬a, 王轶男a, 周国伟a,*(
)
收稿日期:
2025-05-18
接受日期:
2025-06-14
出版日期:
2025-10-18
发布日期:
2025-10-05
通讯作者:
*电子信箱: sngu@qlu.edu.cn (顾少楠),gwzhou@qlu.edu.cn (周国伟).
基金资助:
Wenhui Qia, Xiuyan Lib, Shaonan Gua,*(), Bin Suna, Yinan Wanga, Guowei Zhoua,*(
)
Received:
2025-05-18
Accepted:
2025-06-14
Online:
2025-10-18
Published:
2025-10-05
Contact:
*E-mail: sngu@qlu.edu.cn (S. Gu), gwzhou@qlu.edu.cn (G. Zhou).
About author:
Shaonan Gu (School of Chemistry and Chemical Engineering, Qilu University of Technology) received his Ph.D degree in 2016 from the University of Science and Technology Beijing. He then conducted postdoctoral research at the Hong Kong University of Science and Technology and the Hong Kong Polytechnic University from 2016 to 2018, respectively. His research interests center on designing and synthesizing photocatalysts with activities for photocatalytic hydrogen peroxide production and photocatalytic water splitting, as well as developing and investigating energy conversion and storage materials such as lithium ions and lithium sulfur battery electrodes, including their structural properties through theoretical calculations. His recent progresses focused on the theory and application of materials like MOFs, rare earth single atoms, and COFs in photo- and electro-catalysis. Now he has published over 80 peer-reviewed papers.Supported by:
摘要:
过氧化氢(H2O2)在医疗保健、电子行业、化学合成等领域广泛应用并起着关键作用. 然而, 目前全球超过95%的H2O2仍然通过蒽醌法生产制备, 该过程设施规模庞大, 操作复杂且污染严重, 限制了其可持续发展. 利用光催化技术生产H2O2, 已成为绿色可持续的合成方法之一.但光催化技术仍然面临着光吸收范围窄、光生载流子分离效率低、氧还原活性弱以及生成过H2O2的选择性低等问题. 金属有机催化剂因其可调谐的电子结构特性, 被视为探索H2O2合成机制及构效关系的理想选择.
本文系统地总结了金属有机催化剂在光催化产H2O2中的最新研究进展. 首先, 概述了金属有机催化剂在光催化产H2O2领域的优势: (1)金属位点可充当电子陷阱, 抑制光生电子-空穴的复合; (2) 金属原子与相邻原子连接形成电子传递桥; (3)金属掺杂可引入中间能级; (4)金属位点可以作为O2的活化位点; (5)金属附近的微环境可以调节以及(6)金属催化剂具有比较明确的O2吸附模式. 随后详细分析了光催化合成H2O2的机理, 包括氧还原反应和水氧化反应途径. 重点综述了金属有机催化剂的电子结构调控策略对光吸收范围、光生载流子分离、O2活化过程以及H2O2选择性生成的影响; 具体分析了催化剂的设计对能带结构调节和电子迁移速率提升的作用; 突出了S型异质结从动力学和热力学两个层面协同作用以提高光催化产H2O2效率的优势. 本文还讨论了活性位点在原子尺度上特异性地参与O2吸附和活化过程, 并通过设计对称配位结构和不对称配位结构改变金属位点电荷密度以及O2吸附能, 从而提高催化剂的O2活化能力. 此外, 还探讨了H2O2分解的途径、影响H2O2分解的因素以及对牺牲剂利用的优势和弊端. 最后, 本文简要总结了金属有机催化剂开发设计和应用所面临的各种挑战, 包括金属有机催化剂不稳定、合成过程中金属原子容易团聚以及反应机理未明确等.
未来可能需要结合理论计算, 设计可定制配位结构以及具有配位稳定性的催化剂, 或引入多样的配位原子和基团实现电子结构调制的多样性, 并且结合先进的测试技术来阐明各种自由基的反应过程和机理等. 总之, 光催化制备H2O2是一个非常有前途的方法, 金属基有机半导体的研究将使光催化剂更加多元化, 有望在实际生产中得到广泛应用.
亓文慧, 李秀艳, 顾少楠, 孙彬, 王轶男, 周国伟. 金属有机催化剂的电子结构调控在光催化产H2O2中的应用[J]. 催化学报, 2025, 77: 45-69.
Wenhui Qi, Xiuyan Li, Shaonan Gu, Bin Sun, Yinan Wang, Guowei Zhou. Electronic structure modulation of metal based organic catalysts for photocatalytic H2O2 production[J]. Chinese Journal of Catalysis, 2025, 77: 45-69.
Fig. 1. Influence of electronic structure regulation in metal based organic catalysts on H2O2 generation, and the role of sacrificial agents in catalytic systems.
Fig. 3. (a) Preparation schematics of Au/TB-COF. ISI-XPS spectra of Au 4f (b) and N 1s (c) for Au, TB-COF, and AT-1 under different condition. EIS spectra (d) and transient photocurrent curves (e) of the as-prepared samples. Reproduced with permission from Ref. [85]. Copyright 2024, Elsevier. (f) PL spectra of C3N4, CP, Pt/C3N4, and Pt/CP. (g) In-situ Pt 4f XPS spectra under dark and illumination. Reproduced with permission from Ref. [87]. Copyright 2024, Wiley. (h) The preparation route of Co-N-C/SA-PDI photocatalyst. (i) UV-vis DRS analysis of SA-PDI, Co-N-C and Co-N-C/SA-PDI. (j) PL emission spectra of SA-PDI, Co-N-C and Co-N-C/SA-PDI-70%. (k) O 1s spectra of SA-PDI, Co-N-C/SA-PDI-70% and Co-N-C. Reproduced with permission from Ref. [89]. Copyright 2023, Elsevier.
Fig. 4. (a) Charge density difference distribution of O2 molecule on Cu-NG/CN and NG/CN. (b) PL spectra of all the samples. (c) UV-vis DRS of all the samples. (d) transient photocurrent curves of all the samples. Reproduced with permission from Ref. [98]. Copyright 2023, Elsevier. (e) band structure alignments of CN and CN-KI-X. (f) Top views of the structure with different charge densities of CN and CN-KI-10. (g) PL spectra. (h) The H2O2 formation (Kf) and the decomposition (Kd) rate constant over CN and CN-KI-10. Reproduced with permission from Ref. [101]. Copyright 2023, Elsevier. (i) PL spectra of g-C3N4 in pure and K+-added solvents. (j) Time-resolved PL data and corresponding fits. (k) Schematic illustrating potential pathways of K+ adsorption in promoting H2O2 generation by g-C3N4. Reproduced with permission from Ref. [102]. Copyright 2025, Elsevier.
Fig. 5. (a) Approximate binding energies of Melem_3 and Melem_3M for the lowest-lying excited states. (b) Visualization of the LUMOs of Melem_3In3+ and Melem_3Sn4+. (c) Transition densities of Melem_3M. Reproduced with permission from Ref. [106]. Copyright 2021, Elsevier. (d) Schematic illustration for the fabrication of MLCD defects in NTU-9. (e,f) TDOS and PDOS of nondefective NTU-9 and NTU-9 with MLCD defects, respectively. (g) The relationship between spin polarization and O2 activation. Reproduced with permission from Ref. [110]. Copyright 2023, Elsevier. Illustration of the crystal structures of Hf-UiO-66-NH2 (h) and Hf-UiO-66-NH2 (i). Reproduced with permission from Ref. [113]. Copyright 2022, American Chemical Society.
Fig. 6. (a) Schematic of S-scheme heterojunction photocatalysts mechanism. Reproduced with permission from Ref. [69]. Copyright 2023, American Chemical Society. (b) Charge carrier transfer mechanism in the COF/IS S-scheme heterojunction. (c) UV-vis DRS spectra of COF, IS, and COFIS composites. Reproduced with permission from Ref. [73]. Copyright 2024, Wiley. (d) FT-EXAFS fitting curves of ZnO and ZCOF20 at the Zn K-edge using the structural model of Zn-O4 and Zn-O3N. In situ irradiated XPS spectra of Zn 2p (e) and N 1s (f) for ZCOF20 as compared with those for ZCOF20, ZnO, and COF in the dark. (g) Schematic of the interfacial electron transfer and the IEF formation upon hybridization and S-scheme charge transfer via Zn-N bonds under light irradiation. Reproduced with permission from Ref. [114]. Copyright 2025, Wiley. (h) The catalytic mechanism diagram of C3N4/NiIn2S4. Reproduced with permission from Ref. [115]. Copyright 2022, Elsevier.
Fig. 7. (a) Schematic of the synthesis of high-loading M-SAPs-PuCN. (b) Schematic diagram of Ni sites structure evolution of NiSAPs-PuCN. (c) Free energy profiles for photocatalytic H2O2 evolution reactions over BCN and NiSAPs-PuCN. Reproduced with permission from Ref. [138]. Copyright 2023, Springer Nature. (d) Schematic diagram of catalytic structures to show Li migration in plan and interlayer under light irradiation. (e) Reaction pathway of H2O2 product based on different Li-coordinated structures. (f) Free energies for different intermediates on the Li-coordinated C3N4 sample under different applied electrical fields. Reproduced with permission from Ref. [139]. Copyright 2024, American Chemical Society.
Fig. 8. (a) Schematic of the photocatalytic mechanism for HAAQ-Sb. Reproduced with permission from Ref. [162]. Copyright 2024, Elsevier. (b) Schematic illustration of the synthesis route for CN/Zn-OAc. (c) PDOS and d-band centers for Zn-N3O models. (d) Charge density difference of Zn-N4/OOH and Zn-N3O/OOH models and the corresponding charge accumulated in ?OOH intermediate. (e) Free energy diagram of 2e- O2 reduction on Zn sites within different models. Reproduced with permission from Ref. [149]. Copyright 2024, Wiley. (f) TEM image of O/K-CN. (g) The α/β-HOMO and α/β-LUMO of O2 adsorbed O/K-CN, the iso-surface value is 0.03 e ?-3. (h) Mechanism of electron migration from β-LUMO orbitals to O2 after O/K-CN excitation. The electron-hole distribution of O2 adsorbed PCN (i) and O/K-CN (j) in different excited states, the iso-surface value is 0.002 e ?-3. (k) The free energy diagrams of the as-prepared samples. Reproduced with permission from Ref. [163]. Copyright 2022, Wiley. (l) Free energy diagrams for H2O2 generation on UiO-67-B and UiO-67-B/Pt(II). (m) Plausible mechanism of H2O2 formation and decomposition over UiO-67-B and UiO-67-B/Pt(II). Reproduced with permission from Ref. [168]. Copyright 2023, Elsevier.
Fig. 9. Mechanism for photocatalytic H2O2 production under visible-light irradiation of MIL-125-NH2 (a) and MIL-125-PDI (b). Reproduced with permission from Ref. [172]. Copyright 2021, Royal Society of Chemistry. (c) HAADF-STEM image of Cu-NG/CN. (d) Schematic illustration of charge transfer route and mechanism over Cu-NG/CN. Reproduced with permission from Ref. [96]. Copyright 2023, Elsevier. (e) Open circuit photovoltage. (f) Derivative of Mott-Schottky plots within the potential range between -0.4 and 1.4 vs. Ag/AgCl. (g) Photocatalytic H2O2 production mechanism of K-CAN. Reproduced with permission from Ref. [176]. Copyright 2023, Elsevier.
Fig. 11. (a) Structures of intermediates on NiCN-4 catalyst for 2e- ORR process. (b) Free energy profiles of ORR processes for NiCN-4 catalysts. (c) Schematic demonstration of H2O2 generation for NiCN-4 catalyst. Reproduced with permission from Ref. [191]. Copyright 2022, Elsevier. (d) Schematic synthesis of CoPc-BTM-COF and CoPc-DAB-COF. (e) Free energy diagrams for ORR processes on CoPc. Reproduced with permission from Ref. [192]. Copyright 2022, American Chemical Society. (f) Different charge densities for O2 adsorption on non-defective and defective clusters. Reproduced with permission from Ref. [110]. Copyright 2023, Elsevier.
Fig. 12. (a) Simulated electron density distribution after O2 and H+ adsorption onto UiO-66 and UiO-66-B. (b)The mechanism for photocatalytic H2O2 production over UiO-66 and UiO-66-B. Reproduced with permission from Ref. [200]. Copyright 2021, Royal Society of Chemistry. (c) The structure variation of UIO-66-NH2 before and after OMe group incorporation along with lattice distortion. (d) The intermediate structures for HCOO-UIO-66-NH2 and OMe-UIO-66-NH2-LD. (e) Illustration of the lattice distortion induced by the replacement of -COO- by -OMe coordinated to UIO-66-NH2. (f) Free energy reaction profiles of the 2e- ORR reaction path towards H2O2 generation at 0 V (vs. NHE). Reproduced with permission from Ref. [201]. Copyright 2022, Elsevier.
Fig. 13. (a) Proposed reaction mechanism for photocatalytically synthesized H2O2. Reproduced with permission from Ref. [203]. Copyright 2023, Wiley. (b) Schematic illustrations of the dynamic spin-state transition for Fe(II) and the spin-related photocatalytic H2O2 synthesis overall reaction. Reproduced with permission from Ref. [204]. Copyright 2023, American Chemical Society. (c) Interlaminar charge density mapping of CN layer with Al. (d) PDOS of pristine CN layer and CN layer with Al. Reproduced with permission from Ref. [205]. Copyright 2024, American Chemical Society. (e) TDOS, PDOS and ODOS of Melem_3 Sb3+ combined with the iso-surface of LUMO. Reproduced with permission from Ref. [207]. Copyright 2021, Springer Nature.
Fig. 14. (a) Mechanism of photocatalytic H2O2 production. Reproduced with permission from Ref. [207]. Copyright 2021, Springer Nature. (b) Photocatalysts with different exposed crystalline facets. Reproduced with permission from Ref. [208]. Copyright 2020, Proceedings of the National Academy of Sciences. (c) Schematic illustration of the preparation of the Au-Co TCPP photocatalyst. (d) The mechanism for photocatalytic H2O2 production of Au-Co-TCPP. Reproduced with permission from Ref. [83]. Copyright 2022, Royal Society of Chemistry.
Photocatalyst | Light source | Type of sacrifice | Hydrogen generation rate (μmol g-1 h-1) | Apparent quantum yield | Ref. |
---|---|---|---|---|---|
Au-Co-TCPP | 300 W Xe lamp (λ ≥ 400 nm) | — | 236 | — | [ |
Au/TB-COF. | 300 W Xe lamp (λ > 420 nm) | 10 vol% EtOH | 6067 | — | [ |
Cu-NG/CN | 300 W Xe lamp (AM 1.5 G) | 10 vol% EtOH | 2856 | — | [ |
ZnO/COF | 5 W LED lamp (365 nm) | 8 mM IPA | 10560 | 5.0% (365 nm) | [ |
C3N4-Zn-N(C) | LED (365 nm) | 10 vol% EtOH | 7800 | 26.8% (365 nm) | [ |
NiSAPs-PuCN | 300 W Xe lamp (AM 1.5 G) | — | 640 | 10.9% (420 nm) | [ |
CN/Zn-OAc | 300 W Xe lamp (λ > 400 nm) | 20 vol% EtOH | 7750 | — | [ |
HAAQ-Sb | 300 W Xe lamp (λ > 400 nm) | 10 vol% IPA | 2855 | 20.2% (400 nm) | [ |
O/K-CN | 300 W Xe lamp (λ > 420 nm) | 10 vol% IPA | 15472 | — | [ |
UiO‐67‐B/Pt(II) | 300 W Xe lamp (AM 1.5) | 10 vol% IPA | 27583 | — | [ |
NiCN-4 | 300 W Xe lamp (λ ≥ 420) | 10 vol% IPA | 27110 | 8.6% (400 nm) | [ |
CoPc-BTM-COF | 300 W Xe lamp (λ > 400 nm) | 10 vol% EtOH | 2096 | 7.2% (630 nm) | [ |
CoPc-DAB-COF | 300 W Xe lamp (λ > 400 nm) | 10 vol% EtOH | 1851 | 5.2% (630 nm) | [ |
OMe-UIO-66-NH2-LD | 300 W Xe lamp (λ ≥ 420 nm) | 10 mL acetonitrile and 2 mL BA | 3129 | 5.1% (365 nm) | [ |
Co14-(L-CH3)24 | 300 W Xe lamp (300-1100 nm) | — | 147 | — | [ |
Co1/AQ/C3N4 | 300 W Xe lamp (AM 1.5 G) | — | 124 | 0.05% (full spectrum) | [ |
Ru@Cu-HHTP | 300 W Xe lamp (λ ≥ 400 nm) | 10 vol% EtOH | 571 | 15.3% (450 nm) | [ |
ZIF-8/C3N4 | 300 W Xe lamp (420 ≤ λ ≤ 700 nm) | — | 2641 | 19.6% (420 nm) | [ |
Bi3TiNbO9@C4N | 300 W Xe lamp (AM 1.5) | — | 1250 | — | [ |
TT-COF/ZCS | 300 W Xe lamp (λ ≥ 420 nm) | — | 5171 | 0.4% (420 nm) | [ |
TAPT-TFPA COFs@Pd ICs | 300 W Xe lamp (1.5 G) | 10 vol% EtOH | 2143 | 6.5% (400 nm) | [ |
TAPT-2KtTbPd COF | 300W Xe (1.5 G) | 10 vol% EtOH | 3232 | 9.5% (420 nm) | [ |
CoOx-BCN-FeOOH | 100 mW cm (λ ≥ 420 nm) | — | 340 | 8.4% (420 nm) | [ |
Zn-CN2nd | 300 W Xe lamp (AM 1.5) | 5 vol% EtOH | 1363 | 24.6% (350 nm) | [ |
BI-CN | 5 W LED lamp (λ ≥ 420 nm) | 10 vol% EtOH | 706 | — | [ |
MgIn2S4/COF | 300 W Xe lamp (λ ≥ 420 nm) | — | 4250 | 6.4% (420 nm) | [ |
TiO2/TD COF | 300 W Xe lamp | 10 vol% EtOH | 1703 | 4.1% (420 nm) | [ |
TiO2/COF | 300 W Xe lamp | 10 vol% EtOH | 2162 | — | [ |
TiO2/BTTA | 300 W Xe lamp | 2 mM FAL | 1480 | 5.5% (365 nm) | [ |
Zn-TCPP/CN | 300 W Xe lamp | 10 vol% EtOH | 592 | 7.0% (365 nm) | [ |
CdS/RF | 300 W Xe lamp (λ > 420 nm) | 10 vol% EtOH | 2136 | — | [ |
SCN/T9 | 300 W Xe lamp (300 ≤ λ ≤ 700) | — | 2128 | 0.6% (365 nm) | [ |
BTC40 | 300 W Xe lamp | 10 vol% EtOH | 3749 | — | [ |
Table 1 Summary of representative metal based organic catalysts for photocatalytic hydrogen peroxide production.
Photocatalyst | Light source | Type of sacrifice | Hydrogen generation rate (μmol g-1 h-1) | Apparent quantum yield | Ref. |
---|---|---|---|---|---|
Au-Co-TCPP | 300 W Xe lamp (λ ≥ 400 nm) | — | 236 | — | [ |
Au/TB-COF. | 300 W Xe lamp (λ > 420 nm) | 10 vol% EtOH | 6067 | — | [ |
Cu-NG/CN | 300 W Xe lamp (AM 1.5 G) | 10 vol% EtOH | 2856 | — | [ |
ZnO/COF | 5 W LED lamp (365 nm) | 8 mM IPA | 10560 | 5.0% (365 nm) | [ |
C3N4-Zn-N(C) | LED (365 nm) | 10 vol% EtOH | 7800 | 26.8% (365 nm) | [ |
NiSAPs-PuCN | 300 W Xe lamp (AM 1.5 G) | — | 640 | 10.9% (420 nm) | [ |
CN/Zn-OAc | 300 W Xe lamp (λ > 400 nm) | 20 vol% EtOH | 7750 | — | [ |
HAAQ-Sb | 300 W Xe lamp (λ > 400 nm) | 10 vol% IPA | 2855 | 20.2% (400 nm) | [ |
O/K-CN | 300 W Xe lamp (λ > 420 nm) | 10 vol% IPA | 15472 | — | [ |
UiO‐67‐B/Pt(II) | 300 W Xe lamp (AM 1.5) | 10 vol% IPA | 27583 | — | [ |
NiCN-4 | 300 W Xe lamp (λ ≥ 420) | 10 vol% IPA | 27110 | 8.6% (400 nm) | [ |
CoPc-BTM-COF | 300 W Xe lamp (λ > 400 nm) | 10 vol% EtOH | 2096 | 7.2% (630 nm) | [ |
CoPc-DAB-COF | 300 W Xe lamp (λ > 400 nm) | 10 vol% EtOH | 1851 | 5.2% (630 nm) | [ |
OMe-UIO-66-NH2-LD | 300 W Xe lamp (λ ≥ 420 nm) | 10 mL acetonitrile and 2 mL BA | 3129 | 5.1% (365 nm) | [ |
Co14-(L-CH3)24 | 300 W Xe lamp (300-1100 nm) | — | 147 | — | [ |
Co1/AQ/C3N4 | 300 W Xe lamp (AM 1.5 G) | — | 124 | 0.05% (full spectrum) | [ |
Ru@Cu-HHTP | 300 W Xe lamp (λ ≥ 400 nm) | 10 vol% EtOH | 571 | 15.3% (450 nm) | [ |
ZIF-8/C3N4 | 300 W Xe lamp (420 ≤ λ ≤ 700 nm) | — | 2641 | 19.6% (420 nm) | [ |
Bi3TiNbO9@C4N | 300 W Xe lamp (AM 1.5) | — | 1250 | — | [ |
TT-COF/ZCS | 300 W Xe lamp (λ ≥ 420 nm) | — | 5171 | 0.4% (420 nm) | [ |
TAPT-TFPA COFs@Pd ICs | 300 W Xe lamp (1.5 G) | 10 vol% EtOH | 2143 | 6.5% (400 nm) | [ |
TAPT-2KtTbPd COF | 300W Xe (1.5 G) | 10 vol% EtOH | 3232 | 9.5% (420 nm) | [ |
CoOx-BCN-FeOOH | 100 mW cm (λ ≥ 420 nm) | — | 340 | 8.4% (420 nm) | [ |
Zn-CN2nd | 300 W Xe lamp (AM 1.5) | 5 vol% EtOH | 1363 | 24.6% (350 nm) | [ |
BI-CN | 5 W LED lamp (λ ≥ 420 nm) | 10 vol% EtOH | 706 | — | [ |
MgIn2S4/COF | 300 W Xe lamp (λ ≥ 420 nm) | — | 4250 | 6.4% (420 nm) | [ |
TiO2/TD COF | 300 W Xe lamp | 10 vol% EtOH | 1703 | 4.1% (420 nm) | [ |
TiO2/COF | 300 W Xe lamp | 10 vol% EtOH | 2162 | — | [ |
TiO2/BTTA | 300 W Xe lamp | 2 mM FAL | 1480 | 5.5% (365 nm) | [ |
Zn-TCPP/CN | 300 W Xe lamp | 10 vol% EtOH | 592 | 7.0% (365 nm) | [ |
CdS/RF | 300 W Xe lamp (λ > 420 nm) | 10 vol% EtOH | 2136 | — | [ |
SCN/T9 | 300 W Xe lamp (300 ≤ λ ≤ 700) | — | 2128 | 0.6% (365 nm) | [ |
BTC40 | 300 W Xe lamp | 10 vol% EtOH | 3749 | — | [ |
Fig. 15. (a) Schematic of the preparation process of C3N4-Zn-N(C). (b,c) Calculated 1D and 3D (inset) charge density difference distribution. Reproduced with permission from Ref. [133]. Copyright 2025, Wiley. (d) Self-assembly of [Ru(bpy)2]2 into Cu-HHTP to create the photocatalyst with bi-functional unit. Reproduced with permission from Ref. [214]. Copyright 2025, Wiley. (e) Left: two-phase systems composed of an aqueous phase and a BA phase containing MIL-125-NH2 and MIL-125-Rn. Right: photocatalytic H2O2 production utilizing the two-phase system. Reproduced with permission from Ref. [217]. Copyright 2019, Wiley.
Fig. 16. (a) Proposed mechanism for H2O2 production over hydrophobic ZIS/PCN heterojunction in pure water and in two-phase systems. Reproduced with permission from Ref. [219]. Copyright 2024, Elsevier. (b) The mechanisms for production of H2O2 over ZCN. Reproduced with permission from Ref. [224]. Copyright 2020, Elsevier. (c) Scheme illustration for the synthesis process of the Bi3TiNbO9@C4N heterojunction. Reproduced with permission from Ref. [226]. Copyright 2024, Wiley.
|
[1] | 刘欢, 秉琦明, 于良, 邓德会. 面向高效乙炔加氢制乙烯的二硫化钨限域金属原子催化剂理论预测[J]. 催化学报, 2025, 76(9): 221-229. |
[2] | 梁诗诺, 李冯俊, 黄菲, 王心俣, 刘升卫. 轴向磷配位修饰Co-N4活性中心促进双通道H2O2光合成[J]. 催化学报, 2025, 76(9): 81-95. |
[3] | 余成文, 梁乐程, 穆张岩, 尹绍祺, 刘欲文, 陈胜利. FeNC层稳定的L10-PtFe金属间纳米颗粒用于高效氧还原[J]. 催化学报, 2025, 75(8): 125-136. |
[4] | 朱晓辉, 邢浩然, 何光裕, 肖海, 陈银娟, 李隽. 石墨二炔负载的d8态Fe双原子催化剂耦合-解耦自旋态转换机制研究[J]. 催化学报, 2025, 74(7): 411-424. |
[5] | 张昊, 熊小松, 汪涛, 吴宇平. 动态氢插层催化[J]. 催化学报, 2025, 74(7): 1-3. |
[6] | 何雪璐, 马雯燕, 朱思腾, 李丹, 蒋加兴. 共轭多孔聚合物构建单元的电子结构匹配性对光催化析氢活性的影响[J]. 催化学报, 2025, 73(6): 279-288. |
[7] | 李晨浩, 王昊, 王卫卫, 白烁, 公忠彬, 桑勤勤, 张雨晴, 霍锋, 刘艳荣. PtCu纳米枝晶催化剂及其增强质子交换膜燃料电池稳定性研究[J]. 催化学报, 2025, 73(6): 322-333. |
[8] | 姚瑶, 徐菊萍, 邵敏华. 多晶金表面上析氢反应与氧还原反应的竞争[J]. 催化学报, 2025, 73(6): 271-278. |
[9] | 李思明, 孙恩样, 魏鹏飞, 赵微, 裴随珠, 陈颖, 杨洁, 陈绘丽, 尹熙, 王旻, 李亚伟. 浸渍离子液体于多孔Fe-N-C电催化剂以改善聚合物电解质燃料电池电极动力学与质量传输[J]. 催化学报, 2025, 72(5): 277-288. |
[10] | 胡呈弘, 张悦, 张仪, 黄沁彤, 沈葵, 陈立宇, 李映伟. Sn电子调节器增强Fe位点电催化CO2还原性能[J]. 催化学报, 2025, 72(5): 222-229. |
[11] | 肖建洲, 赵致灏, 张楠楠, 车宏途, 乔秀, 张光颖, 初小宇, 王雅, 董鸿, 张凤鸣. 共价有机框架中的连接工程用于在水和空气中光催化全合成H2O2[J]. 催化学报, 2025, 69(2): 219-229. |
[12] | 王心琪, 张雪元, 焦梦改, 马润林, 谢芳, 万浩, 沈祥建, 张利利, 马炜, 周震. 石墨烯纳米片锚定Pt-N3O强配位结构加速电催化氧还原四电子转移过程[J]. 催化学报, 2025, 77(10): 227-235. |
[13] | 刘志远, 王长安, 杨平, 王薇, 高鸿毅, 安国庆, 刘斯奇, 陈娟, 郭婷婷, 徐鑫梦, 王戈. MOFs中Pd纳米粒子的微环境和电子结构调控增强双环戊二烯低温加氢活性[J]. 催化学报, 2024, 64(9): 112-122. |
[14] | 任卫杰, 李宁, 常青, 武杰, 杨金龙, 胡胜亮, 康振辉. 通过碳点从共价三嗪框架中提取光生空穴用于光合作用产过氧化氢[J]. 催化学报, 2024, 62(7): 178-189. |
[15] | 陈瑞, 方翔, 张东方, 赫兰齐, 吴胤龙, 孙成华, 王昆, 宋树芹. 原位构筑三维有序自支撑Co-N-C一体化电极并用于高效电催化氧还原反应[J]. 催化学报, 2024, 61(6): 237-246. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||