催化学报 ›› 2023, Vol. 44: 7-49.DOI: 10.1016/S1872-2067(22)64149-4
苏慧a,b,1, 姜静a,b,1, 宋少佳c, 安博涵a,b, 李宁a,b, 高旸钦a,b, 戈磊a,b,*()
收稿日期:
2022-07-11
接受日期:
2022-09-01
出版日期:
2023-01-18
发布日期:
2022-12-08
通讯作者:
戈磊
作者简介:
1共同第一作者.
基金资助:
Hui Sua,b,1, Jing Jianga,b,1, Shaojia Songc, Bohan Ana,b, Ning Lia,b, Yangqin Gaoa,b, Lei Gea,b,*()
Received:
2022-07-11
Accepted:
2022-09-01
Online:
2023-01-18
Published:
2022-12-08
Contact:
Lei Ge
About author:
Lei Ge (College of New Energy and Materials, China University of Petroleum Beijing) received his B.S. in 2002 and Ph.D degree in 2006 from Tianjin University. At the end of 2006, he joined the faculty of Department of Materials Science and Engineering, China University of Petroleum Beijing. From 2011 to 2012, he did postdoctoral research at The University of California at Riverside. His research interests currently focus on new materials and energy photocatalysis, electrocatalysis with emphasis on design of new catalysts and control of morphology, microstructure and reaction mechanism for hydrogen production, environmental pollutants degradation, etc. Some of his recent progresses include the novel approaches to design cocatalysts decorated photocatalysts with controllable microstructures, the synthesis of novel hollow structured materials with superior catalytic performance, preparation of metal and nonmetal ions doped electrocatalysts derived from MOFs with high overwall water splitting performance. He has coauthored more than 120 peer-reviewed papers. He was invited as a young member of the editorial board of Chin. J. Catal. Since 2020.Supported by:
摘要:
自从国际社会提出“碳达峰、碳中和”目标以来, 人们越来越意识到节约资源、保护环境、开发新能源的必要性. 氢能(H2)作为最具竞争力的清洁能源之一, 引起了研究人员的广泛关注. 电化学全解水被认为是一种利用风能和太阳能产生氢气的有效技术, 其主要由两个半反应组成: 析氧反应(OER)和析氢反应(HER). 然而, 在实际工业化生产过程中阳极反应动力学OER慢, 能量转换效率低, 阴极反应稳定性差, 导致经济效益不理想, 因此, 急需开发和探索耐久高效的电催化剂. 过渡金属硫化物因具有独特的结构特征、丰富的活性位点和可调控的电子性质和组成, 而被广泛用于电化学全解水制氢.
本文综述了过渡金属硫化物的合成方法, 一般包括: 水热(溶剂热)法、电化学沉积法、液相剥离法、化学气相沉积法和球磨法, 并概述了不同方法的基本概念、合成步骤以及优缺点. 总结了近年用于电催化领域中典型单一硫化物(包括MoS2, WS2, Co3S4, Ni3S2等)材料的合成方法和机理, 明确了S元素在整个电催化过程中的重要作用. 针对单一硫化物稳定性差、活性位点少、电化学活性不高的缺点, 详细总结了双金属、多金属以及单原子、双原子硫化物的催化机理和催化性能. 当采用复合、引入缺陷、空缺和形态调节等手段修饰时, 能够有效调控金属硫化物的电子结构, 增加活性位点数量, 优化反应中间体的吸附能, 降低OER过程的能垒, 从而使多金属硫化物具有优异的电化学性能. 最后, 通过一些典型的研究结果揭示了过渡金属硫化物在水分子分裂过程中的结构特性变化原理, 特别是对于多金属硫化物, 活性位点可以是金属阳离子, 而其他金属的引入将在一定程度上改变活性中心附近的电子结构和配位环境, 进而改善材料的催化性能.
尽管过渡金属硫化物在电催化领域的应用研究取得了一系列进展, 但仍存在诸多挑战, 距实际应用仍有较大差距. 需要综合考虑经济、高性能、稳定性和环境友好等因素进行过渡金属硫化物催化材料的设计、制备和性能调控, 并为大规模应用提供基础. 同时, 深入探索电催化机理有利于设计高效电催化剂和推动电催化领域的持续发展. 综上, 本文为新型电催化材料的制备和电催化全解水机理的深入研究提供一定的参考.
苏慧, 姜静, 宋少佳, 安博涵, 李宁, 高旸钦, 戈磊. 过渡金属硫化物相关电催化剂的设计与应用研究[J]. 催化学报, 2023, 44: 7-49.
Hui Su, Jing Jiang, Shaojia Song, Bohan An, Ning Li, Yangqin Gao, Lei Ge. Recent progress on design and applications of transition metal chalcogenide-associated electrocatalysts for the overall water splitting[J]. Chinese Journal of Catalysis, 2023, 44: 7-49.
Fig. 1. (a) Schematic diagram of an electrolyzer. (b,c) Volcano plots for the HER and OER catalysts. (d?f) Mechanism of HER/OER electrocatalysis in two different media. Reprinted with permission from Ref. [82]. Copyright 2018, Elsevier B.V.
Fig. 2. (a) Synthesis chart of heterostructured MoS2-Ni3S2 HNRs/NF composites. Reprinted with permission from Ref. [99]. Copyright 2017, American Chemical Society. (b) Schematic illustration of the Co9S8/WS2 composites. Reprinted with permission from Ref. [100]. Copyright 2017, Royal Society of Chemistry. (c?e) The preparation of metal sulfides on NF by different methods. Reprinted with permission from Ref. [103?-105]. Copyright 2019, Wiley-VCH GmbH. Copyright 2017, Copyright 2018, Elsevier. B.V.
Fig. 3. Scheme of the whole LPE process containing immersion, insertion, exfoliation, and stabilization. Reprinted with permission from Ref. [115]. Copyright 2016, Wiley-VCH GmbH.
Fig. 4. (a) Process for buildup of multilayer films by the LBL method. Reprinted with permission from Ref. [117]. Copyright 2018, American Chemical Society. (b) Mechanism illustration of electrochemically exfoliating bulk NiPS3 crystals in tetra-n-butylammonium salts solution. Reprinted with permission from Ref. [118]. Copyright 2019, Wiley-VCH GmbH. (c) Schematic illustration of the exfoliation process. Reprinted with permission from Ref. [119]. Copyright 2019, Elsevier. B.V.
Fig. 5. (a) Synthesis of Fe-S/NGF composite. Reprinted with permission from Ref. [123]. Copyright 2021, Science Citation Index Expanded. (b) Synthesis of the C-N-MoS2/CC-700. Reprinted with permission from Ref. [124]. Copyright 2021, Royal Society of Chemistry. (c) Schematic illustration of CoS2, Se:CoS2?x and CoSe1?x electrodes. Reprinted with permission from Ref. [121]. Copyright 2021, Royal Society of Chemistry. (d) The synthetic process of N-CoS2 and CoS2. Reprinted with permission from Ref. [122]. Copyright 2019, Wiley-VCH GmbH. (e) A schematic diagram showing preparation process of samples. Reprinted with permission from Ref. [125]. Copyright 2021, Springer Nature.
Fig. 6. (a) Schematic of the MoS2-NiS2/G. Reprinted with permission from Ref. [130]. Copyright 2020, Royal Society of Chemistry. (b) Schematic of the P-doped MoS2. Reprinted with permission from Ref. [131]. Copyright 2022, Springer Nature.
Fig. 7. (a?c) The process of NH3 stripping S-V-S. Reprinted with permission from Ref. [153]. Copyright 2011, American Chemical Society (d,f) SEM image of MoS2 nanostructures of original growth and chemical exfoliation. (e) Schematic diagram of phase transition from 2H-MoS2 to 1T MoS2 in partial semiconductor induced by P atoms. Reprinted with permission from Ref. [161]. Copyright 2018, Wiley-VCH GmbH.
Catalyst | Preparation strategy | Electrolyte | Overpotential (mV) | Tafel slope (mV dec‒1) | Ref. |
---|---|---|---|---|---|
monolayer MoS2 | hydrothermal synthesis | 0.1 mol L‒1 KOH | 200 | 73 | [ |
Co-Ni3S2 | solvothermal-electrodeposition | 1 mol L‒1 KOH | 80 | 43 | [ |
Co3O4/MoS2 | hydrothermal | 1 mol L‒1 KOH | 205 | 98 | [ |
Ni-N0.19S | vapor-assisted treatment | 1 mol L‒1 KOH | 125 | 42 | [ |
CoMoSx | hydrothermal | 1 mol L‒1 KOH | 89 | 94 | [ |
Ni-Fe-S | solvothermal | 1 mol L‒1 KOH | 115 | 108 | [ |
MoS2/Co3S4 | hydrothermal | 1 mol L‒1 KOH | 90 | 61 | [ |
MoS2-NiS2 | solid-state synthesis | 1 mol L‒1 KOH | 141 | 77 | [ |
NiS0.5Se0.5 | hydrothermal | 1 mol L‒1 KOH | 70 | 78 | [ |
N-CoS2/G | hydrothermal | 1 mol L‒1 KOH | 109 | 69 | [ |
FeS2/CoS2 | vapor-deposition | 1 mol L‒1 KOH | 78 | 44 | [ |
MoS2/NiS2 | hydrothermal | 1 mol L‒1 KOH | 62 | 80 | [ |
PtSA-Ni3S2 | solvothermal | 1 mol L‒1 KOH | 80 | 34 | [ |
Co3S4@FNC-Co | hydrothermal | 1 mol L‒1 KOH | 140 | 103 | [ |
NiPS3 | electrochemical exfoliation | 1 mol L‒1 KOH | 53 | 38 | [ |
MoS2/CoS2 | hydrothermal | 1 mol L‒1 KOH | 71 | 60 | [ |
MoS2/RGO | hydrothermal synthesis | 0.5 mol L‒1 H2SO4 | 100 | 41 | [ |
1T phase MoS2 | chemical exfoliation | 0.5 mol L‒1 H2SO4 | 200 | 40 | [ |
VS2 nanosheets | one-pot hydrothermal | 0.5 mol L‒1 H2SO4 | 43 | 36 | [ |
MoSe2/MoS2 | hydrothermal | 0.5 mol L‒1 H2SO4 | 162 | 61 | [ |
S-RhNi | hydrothermal | 0.5 mol L‒1 H2SO4 | 44 | 24 | [ |
Fe-Ni3S2 | hydrothermal | 0.5 mol L‒1 H2SO4 | 198 | 42 | [ |
N-MoSx | hydrothermal | 0.5 mol L‒1 H2SO4 | 143 | 57 | [ |
Mn-CoS2 | hydrothermal | 0.5 mol L‒1 H2SO4 | 43 | 34 | [ |
Co:FeS2/CoS | solvothermal | 0.5 mol L‒1 H2SO4 | 69 | 46 | [ |
Fe-NiS2 | electrocatalytic/photocatalytic | 0.5 mol L‒1 H2SO4 | 121 | 37 | [ |
MoS2/VG | microwave-assisted | 0.5 mol L‒1 H2SO4 | 85 | 42 | [ |
CoSeS@NC | calcination | 0.5 mol L‒1 H2SO4 | 115 | 43 | [ |
CNT/VS2-MoS2 | hydrothermal sol-gel processes | 0.5 mol L‒1 H2SO4 | 215 | 64 | [ |
CoMoS4NS | solvothermal | 1.0 mol L‒1 PBS | 183 | 116 | [ |
Table 1 Summary of metal sulfide catalysts for hydrogen evolution reaction.
Catalyst | Preparation strategy | Electrolyte | Overpotential (mV) | Tafel slope (mV dec‒1) | Ref. |
---|---|---|---|---|---|
monolayer MoS2 | hydrothermal synthesis | 0.1 mol L‒1 KOH | 200 | 73 | [ |
Co-Ni3S2 | solvothermal-electrodeposition | 1 mol L‒1 KOH | 80 | 43 | [ |
Co3O4/MoS2 | hydrothermal | 1 mol L‒1 KOH | 205 | 98 | [ |
Ni-N0.19S | vapor-assisted treatment | 1 mol L‒1 KOH | 125 | 42 | [ |
CoMoSx | hydrothermal | 1 mol L‒1 KOH | 89 | 94 | [ |
Ni-Fe-S | solvothermal | 1 mol L‒1 KOH | 115 | 108 | [ |
MoS2/Co3S4 | hydrothermal | 1 mol L‒1 KOH | 90 | 61 | [ |
MoS2-NiS2 | solid-state synthesis | 1 mol L‒1 KOH | 141 | 77 | [ |
NiS0.5Se0.5 | hydrothermal | 1 mol L‒1 KOH | 70 | 78 | [ |
N-CoS2/G | hydrothermal | 1 mol L‒1 KOH | 109 | 69 | [ |
FeS2/CoS2 | vapor-deposition | 1 mol L‒1 KOH | 78 | 44 | [ |
MoS2/NiS2 | hydrothermal | 1 mol L‒1 KOH | 62 | 80 | [ |
PtSA-Ni3S2 | solvothermal | 1 mol L‒1 KOH | 80 | 34 | [ |
Co3S4@FNC-Co | hydrothermal | 1 mol L‒1 KOH | 140 | 103 | [ |
NiPS3 | electrochemical exfoliation | 1 mol L‒1 KOH | 53 | 38 | [ |
MoS2/CoS2 | hydrothermal | 1 mol L‒1 KOH | 71 | 60 | [ |
MoS2/RGO | hydrothermal synthesis | 0.5 mol L‒1 H2SO4 | 100 | 41 | [ |
1T phase MoS2 | chemical exfoliation | 0.5 mol L‒1 H2SO4 | 200 | 40 | [ |
VS2 nanosheets | one-pot hydrothermal | 0.5 mol L‒1 H2SO4 | 43 | 36 | [ |
MoSe2/MoS2 | hydrothermal | 0.5 mol L‒1 H2SO4 | 162 | 61 | [ |
S-RhNi | hydrothermal | 0.5 mol L‒1 H2SO4 | 44 | 24 | [ |
Fe-Ni3S2 | hydrothermal | 0.5 mol L‒1 H2SO4 | 198 | 42 | [ |
N-MoSx | hydrothermal | 0.5 mol L‒1 H2SO4 | 143 | 57 | [ |
Mn-CoS2 | hydrothermal | 0.5 mol L‒1 H2SO4 | 43 | 34 | [ |
Co:FeS2/CoS | solvothermal | 0.5 mol L‒1 H2SO4 | 69 | 46 | [ |
Fe-NiS2 | electrocatalytic/photocatalytic | 0.5 mol L‒1 H2SO4 | 121 | 37 | [ |
MoS2/VG | microwave-assisted | 0.5 mol L‒1 H2SO4 | 85 | 42 | [ |
CoSeS@NC | calcination | 0.5 mol L‒1 H2SO4 | 115 | 43 | [ |
CNT/VS2-MoS2 | hydrothermal sol-gel processes | 0.5 mol L‒1 H2SO4 | 215 | 64 | [ |
CoMoS4NS | solvothermal | 1.0 mol L‒1 PBS | 183 | 116 | [ |
Catalyst | Preparation strategy | Current density (mA cm‒2) | Overpotential (mV) | Tafel slope (mV dec‒1) | Ref. |
---|---|---|---|---|---|
Co3O4/MoS2 | solvothermal | 20 | 230 | 45 | [ |
Ni-Fe-S | solvothermal | 10 | 223 | 41 | [ |
NiS2/Fe7S8 | calcination | 50 | 330 | 51 | [ |
MoS2-NiS2 | solid-state synthesis | 10 | 320 | 82 | [ |
Co3S4@FNC-Co | hydrothermal | 10 | 250 | 78 | [ |
CoS1.97-CeO2 | hydrothermal | 10 | 264 | 49 | [ |
NiS0.5Se0.5 | hydrothermal | 10 | 257 | 61 | [ |
MoS2/NiS2 | hydrothermal | 10 | 278 | 91 | [ |
N-CoS2/G | hydrothermal | 10 | 260 | 56 | [ |
FeS2/CoS2 | vapor-deposition | 100 | 302 | 49 | [ |
CoMoOS | solvothermal | 10 | 281 | 75 | [ |
N,S-Graphdiyne | pyrolysis | 10 | 299 | 62 | [ |
Co-CuS0.7 | fast thermolysis | 10 | 270 | 130 | [ |
Ni3S2/VS4 | solvothermal | 50 | 317 | 43 | [ |
NiMoS | hydrothermal | 10 | 260 | 68 | [ |
P-NiS2 | phosphidation | 20 | 225 | 86 | [ |
Ni-Ni3S2 | hydrothermal | 10 | 284 | 56 | [ |
Fe-Ni3S2 | hydrothermal | 10 | 213 | 33 | [ |
Mo-Ni3S2/NixPy | solvothermal | 50 | 238 | 60 | [ |
Ni3S2/MnS | hydrothermal | 10 | 228 | 46 | [ |
Ni3S2-NGQDs/NF | microwave synthetic | 10 | 216 | 95 | [ |
CeOx/CoS | solvothermal | 100 | 418 | 50 | [ |
NiCo2S4/ZnS | calcination | 10 | 220 | 47 | [ |
Ni-Co9S8 | hydrothermal | 50 | 300 | 106 | [ |
MoS2/Fe5Ni4S8 | electrochemical deposition | 10 | 204 | 45 | [ |
Se-(NiCo)Sx/(OH)x | solvothermal | 10 | 155 | 33 | [ |
Fe(OH)3/Ni9S8 | electrochemical deposition | 10 | 206 | 81 | [ |
Co9S8-V3S4 | hydrothermal | 10 | 232 | 59 | [ |
Fe-Ni3S2 | SACVT | 10 | 267 | 103 | [ |
CoMoSx | hydrothermal | 100 | 345 | — | [ |
Table 2 Summary of metal sulfide catalysts for oxygen evolution reaction.
Catalyst | Preparation strategy | Current density (mA cm‒2) | Overpotential (mV) | Tafel slope (mV dec‒1) | Ref. |
---|---|---|---|---|---|
Co3O4/MoS2 | solvothermal | 20 | 230 | 45 | [ |
Ni-Fe-S | solvothermal | 10 | 223 | 41 | [ |
NiS2/Fe7S8 | calcination | 50 | 330 | 51 | [ |
MoS2-NiS2 | solid-state synthesis | 10 | 320 | 82 | [ |
Co3S4@FNC-Co | hydrothermal | 10 | 250 | 78 | [ |
CoS1.97-CeO2 | hydrothermal | 10 | 264 | 49 | [ |
NiS0.5Se0.5 | hydrothermal | 10 | 257 | 61 | [ |
MoS2/NiS2 | hydrothermal | 10 | 278 | 91 | [ |
N-CoS2/G | hydrothermal | 10 | 260 | 56 | [ |
FeS2/CoS2 | vapor-deposition | 100 | 302 | 49 | [ |
CoMoOS | solvothermal | 10 | 281 | 75 | [ |
N,S-Graphdiyne | pyrolysis | 10 | 299 | 62 | [ |
Co-CuS0.7 | fast thermolysis | 10 | 270 | 130 | [ |
Ni3S2/VS4 | solvothermal | 50 | 317 | 43 | [ |
NiMoS | hydrothermal | 10 | 260 | 68 | [ |
P-NiS2 | phosphidation | 20 | 225 | 86 | [ |
Ni-Ni3S2 | hydrothermal | 10 | 284 | 56 | [ |
Fe-Ni3S2 | hydrothermal | 10 | 213 | 33 | [ |
Mo-Ni3S2/NixPy | solvothermal | 50 | 238 | 60 | [ |
Ni3S2/MnS | hydrothermal | 10 | 228 | 46 | [ |
Ni3S2-NGQDs/NF | microwave synthetic | 10 | 216 | 95 | [ |
CeOx/CoS | solvothermal | 100 | 418 | 50 | [ |
NiCo2S4/ZnS | calcination | 10 | 220 | 47 | [ |
Ni-Co9S8 | hydrothermal | 50 | 300 | 106 | [ |
MoS2/Fe5Ni4S8 | electrochemical deposition | 10 | 204 | 45 | [ |
Se-(NiCo)Sx/(OH)x | solvothermal | 10 | 155 | 33 | [ |
Fe(OH)3/Ni9S8 | electrochemical deposition | 10 | 206 | 81 | [ |
Co9S8-V3S4 | hydrothermal | 10 | 232 | 59 | [ |
Fe-Ni3S2 | SACVT | 10 | 267 | 103 | [ |
CoMoSx | hydrothermal | 100 | 345 | — | [ |
Catalyst | Preparation strategy | Reaction/J (mA cm‒2) | Potential (V) | Ref. |
---|---|---|---|---|
MoS2/NiS2||MoS2/NiS2 | hydrothermal | 10 | 1.59 | [ |
NiS||NiS2 | hydrothermal | 10 | 1.58 | [ |
Ni0.33 Co0.67S2||NiCo2O4 | hydrothermal | 10 | 1.69 | [ |
NiS||Ni2P2S6 | calcination | 10 | 1.64 | [ |
MoS2||NiS | reflux reaction | 10 | 1.64 | [ |
MoS2/NiS||MoS2/NiS | solvothermal | 10 | 1.61 | [ |
MoS2-NiS2||MoS2-NiS2 | template-assisted | 10 | 1.64 | [ |
Co-MoS2||Co-MoS2 | vapor-phase hydrothermal | 10 | 1.45 | [ |
CoMoSx/NF||CoMoSx/NF | in situ metathesis reaction | 500 | 1.89 | [ |
Ni2P-Ni3S2||Ni2P-Ni3S2 | hydrothermal | 10 | 1.5 | [ |
N-CoS2/NF||N-CoS2/NF | hydrothermal | 10 | 1.5 | [ |
N-NiMoO4/NiS2||N-NiMoO4/NIS2 | solvent-thermal | 10 | 1.6 | [ |
CoS2-MoS2||CoS2-MoS2 | hydrothermal | 10 | 1.6 | [ |
Ni3S2/MnO2||Ni3S2/MnO2 | hydrothermal | 10 | 1.52 | [ |
CoSx-Ni3S2||CoSx-Ni3S2 | hydrothermal | 100 | 1.63 | [ |
Co9S8/Ni3S2||Co9S8/Ni3S2 | in situ vulcanization | 10 | 1.64 | [ |
Se-MnS/NiS||Se-MnS/NiS | electrodeposition | 10 | 1.47 | [ |
Cu@Cu2S||Cu@Cu2S | electrodeposition | 20 | 1.61 | [ |
NiCo2S4||NiCo2S4 | solvothermal | 10 | 1.6 | [ |
CuCo2S4||CuCo2S4 | hydrothermal | 10 | 1.58 | [ |
P-CoNi2S4||P-CoNi2S4 | gas-phase phosphorization | 10 | 1.54 | [ |
Co-Ni3S2||Co-Ni3S2 | topochemical conversion strategy | 10 | 1.54 | [ |
Ni-Mo-S||Ni-Mo-S | electroplating | 100 | 2.0 | [ |
Co9S8@NOSC||Co9S8@NOSC | hydrothermal | 20 | 1.74 | [ |
NiFe/(Ni,Fe)3S2||NiFe/(Ni,Fe)3S2 | anodic aluminum oxide | 400 | 1.9 | [ |
Co3S4||Ni:Co3S4 | electroplating | 10 | 1.7 | [ |
Table 3 Summary of metal sulfide catalysts for overall water splitting.
Catalyst | Preparation strategy | Reaction/J (mA cm‒2) | Potential (V) | Ref. |
---|---|---|---|---|
MoS2/NiS2||MoS2/NiS2 | hydrothermal | 10 | 1.59 | [ |
NiS||NiS2 | hydrothermal | 10 | 1.58 | [ |
Ni0.33 Co0.67S2||NiCo2O4 | hydrothermal | 10 | 1.69 | [ |
NiS||Ni2P2S6 | calcination | 10 | 1.64 | [ |
MoS2||NiS | reflux reaction | 10 | 1.64 | [ |
MoS2/NiS||MoS2/NiS | solvothermal | 10 | 1.61 | [ |
MoS2-NiS2||MoS2-NiS2 | template-assisted | 10 | 1.64 | [ |
Co-MoS2||Co-MoS2 | vapor-phase hydrothermal | 10 | 1.45 | [ |
CoMoSx/NF||CoMoSx/NF | in situ metathesis reaction | 500 | 1.89 | [ |
Ni2P-Ni3S2||Ni2P-Ni3S2 | hydrothermal | 10 | 1.5 | [ |
N-CoS2/NF||N-CoS2/NF | hydrothermal | 10 | 1.5 | [ |
N-NiMoO4/NiS2||N-NiMoO4/NIS2 | solvent-thermal | 10 | 1.6 | [ |
CoS2-MoS2||CoS2-MoS2 | hydrothermal | 10 | 1.6 | [ |
Ni3S2/MnO2||Ni3S2/MnO2 | hydrothermal | 10 | 1.52 | [ |
CoSx-Ni3S2||CoSx-Ni3S2 | hydrothermal | 100 | 1.63 | [ |
Co9S8/Ni3S2||Co9S8/Ni3S2 | in situ vulcanization | 10 | 1.64 | [ |
Se-MnS/NiS||Se-MnS/NiS | electrodeposition | 10 | 1.47 | [ |
Cu@Cu2S||Cu@Cu2S | electrodeposition | 20 | 1.61 | [ |
NiCo2S4||NiCo2S4 | solvothermal | 10 | 1.6 | [ |
CuCo2S4||CuCo2S4 | hydrothermal | 10 | 1.58 | [ |
P-CoNi2S4||P-CoNi2S4 | gas-phase phosphorization | 10 | 1.54 | [ |
Co-Ni3S2||Co-Ni3S2 | topochemical conversion strategy | 10 | 1.54 | [ |
Ni-Mo-S||Ni-Mo-S | electroplating | 100 | 2.0 | [ |
Co9S8@NOSC||Co9S8@NOSC | hydrothermal | 20 | 1.74 | [ |
NiFe/(Ni,Fe)3S2||NiFe/(Ni,Fe)3S2 | anodic aluminum oxide | 400 | 1.9 | [ |
Co3S4||Ni:Co3S4 | electroplating | 10 | 1.7 | [ |
Fig. 8. (a) Schematic illustration of the synthesis route for the Co9S8/Zn0.8Co0.2S@C. (b) FESEM image of Zn-Co-ZIFs. (c) High-magnification FESEM images of Co9S8/Zn0.8Co0.2S@C. Electrochemical performance of ZnS@C, Zn0.8Co0.2S@C, Co9S8/Zn0.8Co0.2S@C, Co9S8@C, physical mixture, and IrO2@C. (d) Electrochemical performance of ZnS@C, Zn0.8Co0.2S@C, Co9S8/Zn0.8Co0.2S@C, Co9S8@C, physical mixture, and IrO2@C. (e) The current density as a function of scan rate in the charge process. Reprinted with permission from Ref. [278]. Copyright 2018, Elsevier. B.V. (f) Polarization curves of Ni3Sn2S2@Ni3S2, Ni3S2, Pt/C NF and bare NF. (g) Tafel plots of Ni3S2, Ni3Sn2S2@Ni3S2 and Pt/C NF. Reprinted with permission from Ref. [279]. Copyright 2020, Elsevier. B.V. (h) DFT-optimized structures of MoS2/Co9S8 interfaces:MoS2 (001) parallel to Co9S8 (001) and (001) MoS2 perpendicular to Co9S8 (001). Atom colors: Mo, black; Co, blue; and S, yellow. Co-termination at the interface results in the most stable structure. (i) Calculated densities of electronic states for MoS2/Co9S8interfaces with Co termination and with Co9S8. (j) Gibbs free energy changes for four steps of OER at 0 V vs. standard hydrogen electrode. Reprinted with permission from Ref. [280]. Copyright 2019, American Chemical Society.
Fig. 9. (a,b) Characterization, chemical analysis and SEM image for (Co1?xNix)(S1?yPy)2/GO. (c,e) The OER and HER polarization curves of Ni3S2@NGCLs/NF. (d,f) The stability tests of OER and HER. (g) Linear sweeping voltammetry curve of Ni3S2@NGCLs/NF bifunctional catalyst and noble metal catalyst. (h) 1.5 V dry-cell battery assisted water-splitting device. (i) Calculated free-energy diagram of HER over Ni3S2, Ni3S2@C, Ni3S2@NC, at equilibrium potential. (j) Free-energy diagram for the four steps of the OER on the Ni3S2, Ni3S2@C, Ni3S2@NC surface at U = 1.23 V. Reprinted with permission from Ref. [284,288]. Copyright 2018, Wiley-VCH GmbH.
Fig. 10. (a) Illustration of the fabrication of 3D-networked heterostructured Ni2P/Ni3S2 HNAs composites and SAED pattern of High-resolution TEM images. (b,e) HER/OER polarization curves of NF, Ni2P, Ni3S2, Ni(OH)2/Ni3S2, and Pt/C. (c,d) Gibbs free-energy diagrams for H adsorption and calculated electronic density of states. Reprinted with permission from Ref. [253]. Copyright 2018, Elsevier. B.V. (f,g) TEM image, and HRTEM image of Co9S8/S-CNTs. Reprinted with permission from Ref. [289]. Copyright 2019, Wiley-VCH GmbH. (h,i) HRTEM at the boundary of Mo2C and MoS2 and scanning transmission electron microscopy of (MoS2)0.125Mo2C. Reprinted with permission from Ref. [290]. Copyright 2018, Elsevier. B.V.
Fig. 11. (a) Schematic illustration of the synthesis process for V-doped NiS2. (b) TEM images of 10% VNS. (c) PXRD patterns of bare NiS2 and 10% VNS (inset: zoomed-in view of XRD patterns). (d) Ni K-edge XANES of bare NiS2 and 10% VNS (inset: zoomed-in view of the Ni K-edge XANES). (e) FT V K-edge FT(k3(χ(k))) of VS2 and 10% VNS. (f,g) LSV polarization curves of bare NiS2, IrO2, Pt/C, and 10% VNS for OER and HER. (h) LSV curves of the typical two-electrode system by using nickel foam supported 10% VNS as both the cathode and anode in 1 mol L?1 KOH. Reprinted with permission from Ref. [295]. Copyright 2017, American Chemical Society.
Fig. 12. (a) Schematic of the formation of NF/T(Ni3S2/MnS-O) on NF. (b) ESR spectra of NF/MnO2, NF/Ni3S2/MnS and NF/T(Ni3S2/MnS-O). (c,e) Schematics of the HER/OER pathways with Mn and Ni atoms adjacent to OV as active sites. (d,f) LSV curves of NF/T(Ni3S2/MnS-O), NF/Ni3S2/MnS, NF/MnO2, and commercial Pt/C/IrO2 in 1.0 mol L?1 KOH. Reprinted with permission from Ref. [298]. Copyright 2019, Elsevier. B.V. (g) Schematic illustration of the synthesis of S-NiFe2O4. (h) ESR spectra of NiFe2O4 and S-NiFe2O4. (i) IR-corrected LSV curves of NiFe2O4, NiS2/FeS2, and S-NiFe2O4 for HER in 1.0 mol L?1 KOH. (j) The PDOS of S-NiFe2O4. (k) The bond length distribution of NiFe2O4 and S-NiFe2O4. (l) Energy diagram for HER with the S-NiFe2O4 electrocatalyst in an alkaline environment. Reprinted with permission from Ref. [299]. Copyright 2021, Wiley-VCH GmbH.
Fig. 13. (a) Scheme for the preparation of Co3S4 PNSvac. (b) LSV curves of Co3S4 PNSvac. Reprinted with permission from Ref. [301]. Copyright 2018, American Chemical Society. HER free energy diagram for different Co sites (c) and Ni sites (d). Reprinted with permission from Ref. [134]. Copyright 2017, American Chemical Society. (e) LSV polarization curves of pure CoS2, N-doped CoS2, and platinum in 0.5 mol L?1 H2SO4. (f) Stability testing of catalytic materials. (g) Illustration of the creation of S vacancies in the basal plane of MoS2. S is removed with a two-step process in the form of H2S. The created S vacancies can serve as active sites for HER. (h) The calculated surface free energy of pristine MoS2/CoMoP2 (Black line), MoS2/CoMoP2 with S vacancies (MoSx/CoMoP2), and with a hydrogen adsorbed on the S vacancy (MSx(H)/CoMoP2). (i) Characterizations of defected MoS2 nanosheets. (j) High-resolution TEM image of an ultrathin layer of defected MoS2-7H. Reprinted with permission from Ref. [58]. Copyright 2021, Springer Nature.
Fig. 14. (a) Schematic of the design process of the samples. (b?g) XRD, XPS, TEM images and OER/HER polarization curves of the samples. (h) The Bader charge density difference and electron transference of Cu-Ni3S2/Co3S4. (i) Mechanism diagram of electronic coupling between Co and Ni in Cu-Ni3S2/Co3S4. (j) Calculated free energy diagram of OER intermediates. (k) Calculated free energy diagram of H adsorption for Cu-Ni3S2/Co3S4. Reprinted with permission from Ref. [303]. Copyright 2021, Elsevier. B.V.
Fig. 15. (a,b) Calculated ΔGH* diagram of the HER. (c,d) The calculated free-energy diagram of the OER on Co and Ni sites. Reprinted with permission from Ref. [306]. Copyright 2021, Elsevier. B.V. (e) A two-electrode configuration for overall water splitting. (f) OER polarization curves of materials. (g) XPS S 2p spectra of Fe17.5%-Ni3S2/NF before and after OER. Reprinted with permission from Ref. [63]. Copyright 2018, American Chemical Society.
Fig. 16. (a) Schematic illustration of the samples. Electron microscope analysis: (b) SEM images; (c) Atomic-resolution HAADF-STEM image; (d) FT of the Mo K-edge EXAFS spectra of Mo foil, MoO3, and Mo-Co9S8@C; (e) OER polarization curves. (f) The durability measurements for the catalyst; (g) Comparison with other OER electrocatalysts of the overpotentials; (h) HER polarization curves in 0.5 mol L?1 H2SO4; (i) Overall water splitting characteristics; (j) Optical photograph of overall water splitting using Mo-Co9S8@C/CC powered by an AA battery. Reprinted with permission from Ref. [308]. Copyright 2019, Wiley-VCH GmbH.
Fig. 17. (a) Calculated density of states for samples. (b) The Cdl of N-Ni3S2/NF and Ni3S2/NF. (c,d) Calculated HER/water adsorption energy for the materials, respectively. Reprinted with permission from Ref. [311]. Copyright 2017, Wiley-VCH GmbH. (e) Schematic illustration. (f) Reaction energy of H adsorption. Reprinted with permission from Ref. [312]. Copyright 2018, Wiley-VCH GmbH. (g) Free energy diagram of HER of (Ni,Fe)3S2/NF and P-(Ni,Fe)3S2/NF. (h) Projected DOS on the (2?10) surface of (Ni,Fe)3S2/NF and P-(Ni,Fe)3S2/NF. (i,j) LSV curves of materials. Reprinted with permission from Ref. [313]. Copyright 2019, American Chemical Society.
Fig. 18. (a?d) The DFT calculation results of the B-Fe7S8/FeS2 electrocatalysts. (a) Free energies of hydrogen adsorption on both S and Fe sites of the FeS2, Fe7S8, B-Fe7S8, and B-Fe7S8/FeS2 electrocatalysts. (b) The electronic density of states of the Fe7S8, B-Fe7S8, and B-Fe7S8/FeS2 electrocatalysts. Dependence of free energies of hydrogen adsorption on the d-band centers of Fe-3d state (c) and the p-band centers of S-3p state (d). (e) Schematic illustration of the synthesis steps of the B-Fe7S8/FeS2 electrocatalysts. The normalized XANES spectra (f) and FT-EXAFS curves (g) at the Fe K-edge of a Fe foil, the FeS2, and B-Fe7S8/FeS2 electrocatalysts. (h) The iR-corrected HER polarization curves. (i) The Cdl values of the FeS2 and B-Fe7S8/FeS2 electrocatalysts. (j) Schematics of the HER pathway on the B-Fe7S8/FeS2 electrocatalysts in alkaline media. (k) The corresponding free energy diagrams of the B-Fe7S8/FeS2 electrocatalysts toward alkaline HER on the B-Fe7S8 side, the FeS2 side, and the B-Fe7S8/FeS2 heterointerface. Reprinted with permission from Ref. [315]. Copyright 2021, Wiley-VCH GmbH.
Fig. 19. (a,b) Typical field emission scanning electron microscopy (FE-SEM) and TEM images of CoS2. Reprinted with permission from Ref. [316]. Copyright 2018, Wiley-VCH GmbH. (c) LSV curves recorded with iR correction for different catalysts. (d) Scheme of the preparation of Fe/P-CoS2 PCNW. Reprinted with permission from Ref. [317]. Copyright 2022, Royal Society of Chemistry. (e) K-L plots of CoSx@Cu2MoS4-MoS2/NSG at different potentials. (f,g) LSVs of materials for HER/OER in 0.1 mol L?1 KOH at a scan rate of 10 mV s?1. Reprinted with permission from Ref. [320]. Copyright 2020, Wiley-VCH GmbH.
Fig. 20. (a) Calculated free energy diagram of OER intermediates. (b) The optimal reaction paths of several catalytic materials for HER. (c) Schematic diagram of the preparation process of the catalysts. (d,e) HAADF-STEM images of Ru-NiCo2S4, Ru-NiCo2S4?x. (f) XANES of Ru K-edge of Ru-NiCo2S4 and Ru-NiCo2S4?x with Ru metal foil and RuO2 as references. (g) FT EXAFS spectra in R-space. (h,i) OER/HER polarization curves of NiCo2S4, NiCo2S4?x, Ru-NiCo2S4, Ru-NiCo2S4?x, and NF. (j,k) Polarization curves and stability test of Ru-NiCo2S4?x//Ru-NiCo2S4 with different metals toward overall water splitting. Reprinted with permission from Ref. [321]. Copyright 2021, Wiley-VCH GmbH.
Fig. 21. (a) Calculated PDOS of PtSA-Ni3S2, Ni3S2, and Pt foil with aligned Fermi level EF. (b) The free energy diagrams of H2O and H adsorbing on the surface of PtSA-Ni3S2, Ni3S2, and Pt foil. (c) LSV polarization curves of PtSA-Ni3S2@Ag NWs, PtSA-Ni3S2@NF, Ni3S2@Ag NWs, Ag NWs, and Pt/C@NF. (d) Schematic illustration of the in-situ preparation of Ni3S2 phase via sulfuration reaction of metallic Ni on Ag nanowires. (e) FT-EXAFS of Pt K-edge EXAFS signal substrate followed by the electrochemical anchoring of single-atom Pt. (f) Atomic-resolution HAADF-STEM images of PtSA-Ni3S2. Reprinted with permission from Ref. [324]. Copyright 2021, Wiley-VCH GmbH. (g) Single S-vacancies in different agglomerations at the concentration of 12.50%. (h) Schematic of the chemical etching process to introduce single S-vacancies. (i) STEM image together with the line profiles extracted from the areas marked with purple rectangles of a CVD-grown monolayer MoS2 flake film after etching. (j) EPR spectra of etched MoS2 with different etching durations compared to P-MoS2. (k) Electrochemical HER performance of P-MoS2 and MoS2?x. (l) LSV curves of MoS2-60 s before and after 1000 cyclic voltammetry. Reprinted with permission from Ref. [325]. Copyright 2020, American Chemical Society.
Fig. 22. (a) Schematic illustration for the formation mechanism of Ru-MoS2-Mo2C. (b) CS-TEM images of Ru-MoS2-Mo2C nanosheet. (c?e) LSV measurement of different materials for HER/OER and overall water splitting in 1.0 mol L?1 KOH medium. (f) ?GH* comparison between active sites in the structure of Ru-MoS2-Mo2C material model. Reprinted with permission from Ref. [326] Copyright 2021, Elsevier. B.V. (g) Schematic illustration of the fabrication of the CoSAs-MoS2/TiN hybrid. (h) The corresponding structure configurations for the two steps of HER in alkaline condition on Co active sites of CoSAs-MoS2. (i) The Gibbs free-energy diagram for the two steps of HER in alkaline conditions on different sites of the MoS2 and CoSAs-MoS2. (j?l) LSV measurement of different materials for HER/OER and overall water splitting in 1.0 mol L?1 KOH medium. (m) Corresponding stability. Reprinted with permission from Ref. [327]. Copyright 2021, Wiley-VCH GmbH.
Fig. 23. (a) Preparation of (Fe,Co)/N-C. (b) Magnified HAADF-STEM of (Fe,Co)/N-C, showing Fe-Co dual sites dominant in (Fe,Co)/N-C. Reprinted with permission from Ref. [329]. Copyright 2017, American Chemical Society. (c) Schematic illustration for the two-step synthesis of Fe2-N-C. (d) Magnified HAADF-STEM of Fe2N-C. Reprinted with permission from Ref. [331]. Copyright 2019, Elsevier. B.V.
Fig. 24. (a) Electron configuration of 3d orbital. (b) Magnetic exchange sketch. (c) The orbital interaction between Co and *OH under different spin configuration. (d) Polarization curves of the Co0.8Mn0.2-MOF with different times of MS. (e) The spin density distribution of Co0.8Mn0.2-MOF. (f) The theoretical simulation of heating process between conventional annealing treatment and magnetic stimulation. (g) The potential of OER for Co0.8Mn0.2-MOF at 100 mA cm?2. Reprinted with permission from Ref. [334]. Copyright 2021, Springer Nature. (h) LSV curves of CoFe2O4 with and without a constant magnetic field (10000 Oe) under different temperatures. (i) The spin-polarization mechanisms in OER with starting from the step of O* + OH? → *OOH + e? step. Reprinted with permission from Ref. [335]. Copyright 2021, Springer Nature.
|
[1] | 唐小龙, 李锋, 李方, 江燕斌, 余长林. 单原子催化剂在光催化和电催化合成过氧化氢中的研究进展[J]. 催化学报, 2023, 52(9): 79-98. |
[2] | 张季, 俞爱民, 孙成华. 非金属掺杂石墨烯异核双原子催化剂氮还原特性研究[J]. 催化学报, 2023, 52(9): 263-270. |
[3] | 胡金念, 田玲婵, 王海燕, 孟洋, 梁锦霞, 朱纯, 李隽. MXene负载3d金属单原子高效氮还原电催化剂的理论筛选[J]. 催化学报, 2023, 52(9): 252-262. |
[4] | 洪岩, 王琦, 阚子旺, 张禹烁, 郭晶, 李思琦, 刘松, 李斌. 电化学氮还原氨反应催化剂的最新研究进展[J]. 催化学报, 2023, 52(9): 50-78. |
[5] | 刘勇, 赵晓丽, 隆昶, 王晓艳, 邓邦为, 李康璐, 孙艳娟, 董帆. 原位构筑动态Cu/Ce(OH)x界面用于高活性、高选择性和高稳定性硝酸盐还原合成氨[J]. 催化学报, 2023, 52(9): 196-206. |
[6] | 高晖, 张恭, 程东方, 王永涛, 赵静, 李晓芝, 杜晓伟, 赵志坚, 王拓, 张鹏, 巩金龙. 构建Cu台阶位促进电催化CO2还原制醇类化学品的研究[J]. 催化学报, 2023, 52(9): 187-195. |
[7] | 邹心仪, 顾均. 酸性条件下二氧化碳高效电还原策略[J]. 催化学报, 2023, 52(9): 14-31. |
[8] | 韩璟怡, 管景奇. 通过表面镧改性和体相锰掺杂协助钴尖晶石酸性下析氧[J]. 催化学报, 2023, 51(8): 1-4. |
[9] | 王潇涵, 田汉, 余旭, 陈立松, 崔香枝, 施剑林. 非晶相电催化剂在电解水领域的研究进展[J]. 催化学报, 2023, 51(8): 5-48. |
[10] | 韩策, 梅丙宝, 张庆华, 张慧敏, 姚鹏飞, 宋平, 宫雪, 崔培昕, 姜政, 谷林, 徐维林. 钒掺杂钨青铜内通道氨配位的钌单原子用于高效析氢反应[J]. 催化学报, 2023, 51(8): 80-89. |
[11] | 周波, 石建巧, 姜一民, 肖磊, 逯宇轩, 董帆, 陈晨, 王特华, 王双印, 邹雨芹. 强化脱氢动力学实现超低电池电压和大电流密度下抗坏血酸电氧化[J]. 催化学报, 2023, 50(7): 372-380. |
[12] | 王元男, 王立娜, 张可新, 徐靖尧, 武倩楠, 谢周兵, 安伟, 梁宵, 邹晓新. 钙钛矿氧化物在水裂解反应中的电催化研究[J]. 催化学报, 2023, 50(7): 109-125. |
[13] | 周纳, 王家志, 张宁, 王志, 王恒国, 黄岗, 鲍迪, 钟海霞, 张新波. 富含缺陷的Cu@CuTCNQ复合材料增强电催化硝酸盐还原成氨[J]. 催化学报, 2023, 50(7): 324-333. |
[14] | 李轩, 蒋兴星, 孔艳, 孙建桔, 胡琪, 柴晓燕, 杨恒攀, 何传新. GaN/In2O3的界面工程用于高效电催化CO2还原制备甲酸[J]. 催化学报, 2023, 50(7): 314-323. |
[15] | Sang Eon Jun, Sungkyun Choi, Jaehyun Kim, Ki Chang Kwon, Sun Hwa Park, Ho Won Jang. 用于电化学能量转换反应的非贵金属单原子催化剂[J]. 催化学报, 2023, 50(7): 195-214. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||