催化学报 ›› 2023, Vol. 49: 42-67.DOI: 10.1016/S1872-2067(23)64444-4
张海波a,b, 王中辽b,*(), 张金锋b,*(
), 代凯a,b,*(
)
收稿日期:
2023-03-12
接受日期:
2023-04-18
出版日期:
2023-06-18
发布日期:
2023-06-05
通讯作者:
*电子信箱: daikai940@chnu.edu.cn (代凯),wangzl@chnu.edu.cn (王中辽),jfzhang@chnu.edu.cn (张金锋).
基金资助:
Haibo Zhanga,b, Zhongliao Wangb,*(), Jinfeng Zhangb,*(
), Kai Daia,b,*(
)
Received:
2023-03-12
Accepted:
2023-04-18
Online:
2023-06-18
Published:
2023-06-05
Contact:
*E-mail: About author:
Zhongliao Wang received his B.A. degree from Huaibei Normal University (China) in 2015, Master degree under the supervision of Prof. Kai Dai from Huaibei Normal University in 2018, and Ph.D. degree under the supervision of Prof. Jiaguo Yu from State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology (China) in 2021. His research interests mainly focus on the controllable synthesis of photocatalysts, CO2 photoreduction, overall utilization of photogenerated charge, photocatalytic mechanism research, and DFT calculation.Supported by:
摘要:
金属硫化物的窄带隙使其具有吸收可见光和红外光的优势, 因此可以用于开发高效的光催化剂. 同时, 金属硫化物具有出色的电荷分离、较强的光还原能力和低氧化还原能垒. 然而, 单一金属硫化物通常具有光吸收强度不高和电子-空穴快速复合的问题. 在仅考虑光吸收范围时, 应选择带隙较窄的光催化剂, 但其氧化还原能力较低. 此外, 金属硫化物易发生光腐蚀. 近年来, 研究发现, 在两种及以上光催化剂间构建异质结可以抑制单一催化剂载流子的复合, 促使电子与空穴的分离; 同时, 异质结光催化剂也被证实可以提高光吸收和增加反应活性位点, 是解决金属硫化物自身不足的重要措施.
本文总结了金属硫化物用于光催化反应的优势和缺陷, 讨论了构建异质结对单一金属硫化物的影响. 不同的合成方法对于异质结光催化剂的形貌结构及性能具有重要影响, 列举了一些金属硫化物异质结合成方法实例, 例如水热合成法、离子交换法、静电纺丝法和原位光化学沉积法等. 异质结光催化剂的种类可以根据电子转移机理分为肖特基结、type II型、Z型和S型异质结等. 随后, 概述了金属硫化物异质结在环境和能源领域的应用, 比较了不同类型金属硫化物异质结的光催化活性. 充分利用光生电子和空穴分别驱动氧化和还原反应, 这不仅提高了光催化效率, 而且拓宽了光催化剂的应用. 此外, 对异质结的电子转移机理进行了深入讨论, 以往的表征手段通常只能间接证明异质结可以抑制电子空穴的复合, 进而促进光催化活性, 并未直接观察到电子转移路径. 近年来, 原位表征技术的快速发展弥补了异质结的证据不足, 通过原位X射线光电子能谱、原位开尔文探针力显微镜和原位电子顺磁共振等表征手段可以观察到电子转移路径, 并可利用原位红外监测反应过程中的中间产物和副产物的生成情况, 逐步完善了异质结光催化剂机理的探究.
本文还展望了金属硫化物异质结构建过程中面临的一些挑战, 虽然金属硫化物基异质结光催化剂改善了载流子快速重组的缺点, 但其光催化活性仍未达到实现产业化应用的水平. 开发出一种具有宽谱带范围可见光吸收、快速电荷分离、大量活性位点、强氧化还原能力和较好稳定性的高性能金属硫化物基异质结光催化剂仍需做大量的工作. 未来可以通过调控形貌、元素掺杂、缺陷工程和增加反应活性位点等策略来进一步提高金属硫化物基异质结光催化剂的活性.
张海波, 王中辽, 张金锋, 代凯. 金属硫化物基异质结光催化剂: 原理、影响、应用和原位表征[J]. 催化学报, 2023, 49: 42-67.
Haibo Zhang, Zhongliao Wang, Jinfeng Zhang, Kai Dai. Metal-sulfide-based heterojunction photocatalysts: Principles, impact, applications, and in-situ characterization[J]. Chinese Journal of Catalysis, 2023, 49: 42-67.
Fig. 4. (a) Schematic depicting the synthesis of a ZnIn2S4-CdS composite; (b) Process for preparing the Cu2?xS-MoX2 (X = S or Se) heterostructure. (c) Procedure for preparing a ternary CdIn2S4/CNFs/Co4S3 composite. (d) Schematic depicting the syntheses of 1D Cd1?xZnxS@O-MoS2 and Cd1?xZnxS@O-MoS2/NiOx nanohybrids. (a) Reprinted with permission from Ref. [62]. Copyright 2020, Springer Nature. (b) Reprinted with permission from Ref. [63]. Copyright 2017, American Chemical Society. (c) Reprinted with permission from Ref. [66]. Copyright 2021, Elsevier. (d) Reprinted with permission from Ref. [67]. Copyright 2019, John Wiley and Sons.
Fig. 5. Architectural designs of conventional heterojunction photocatalysts with various junctions. (a) Schottky junction; (b) type II; (c) direct Z-scheme; (d) S-scheme heterojunctions. Φ: Work function. Ef: Fermi level. RP: Reduction photocatalyst. OP: Oxidation photocatalyst.
Fig. 6. Contact potential differences (a) and work functions (b) for ZCS, ZCS/Pt, and Pt. (c) Schematic showing Schottky-junction formation in ZCS/Pt and the charge-transfer mechanism. Reprinted with permission from Ref. [70]. Copyright 2021, John Wiley and Sons.
Fig. 7. (a) Photocatalytic H2-evolution and AQE data for 4 mol% Ni0.1Co0.9P-Zn0.5Cd0.5S. (b) Fermi levels and work functions of Ni2P, CoP, and Ni0.1Co0.9P. (c) Diagram showing band-edge positions before and after contact between Zn0.5Cd0.5S and Ni0.1Co0.9P. Reprinted with permission from Ref. [71]. Copyright 2019, Elsevier.
Fig. 8. (a) Time-yield plots for ZnIn2S4, MNZIS-X, MNs, and a MNs+ZnIn2S4 physical mixture. (b) Cyclic H2-evolution experiments with MNZIS-4. Calculated average potential profile along the Z axis of MNs (c) and ZnIn2S4 (d). (e) Schematic showing the band structure of MNZIS-4. Reprinted with permission from Ref. [72]. Copyright 2020, John Wiley and Sons.
Fig. 9. (a) Schematic showing of the fabrication of PBA/CdS (CP) and an active hybrid photocatalyst composed of NiS and CdS (CN). Photocatalytic H2 evolution amount from (b) CdS, CP-1, CP-2, CP-3, CdS/NiS, and Ni-Co PBA in the 0.35 mol L?1 Na2S and 0.25 mol L?1 Na2SO3 and (c) CdS, CP-2, CN-2 and CdS/NiS in the non-sulfur 10 vol % LA solution. (d) Proposed photocatalytic mechanisms over CP-2 and CN-2. Reprinted with permission from Ref [74]. Copyright 2022, American Chemical Society.
Fig. 10. (a) Photocatalytic H2-evolution over a CdS hexagonal pyramid, CdS nanorod, and CdS nanoparticles. (b) H2-production photostability of a CdS hexagonal pyramid under visible light over 100 h. (c) SEM image of the facet-selective photodeposition of Pt particles on the CdS hexagonal pyramid and a schematic diagram showing the proposed charge-carrier transfer and H2-evolution mechanism on the CdS hexagonal pyramid. Reprinted with permission from Ref. [76]. Copyright 2021, Elsevier.
Fig. 11. Femtosecond TA traces for ZnIn2S4 (a) and WO3?x/ZnIn2S4 (b). (c) Photocatalytic H2-evolution over WO3?x/ZnIn2S4 when irradiated with light; (d) DFT-calculated GH* values and adsorption configurations for the ZnIn2S4, WO3?x, and WO3?x/ZnIn2S4 systems. Reprinted with permission from Ref. [80]. Copyright 2021, Royal Society of Chemistry.
Fig. 12. Pseudocolor plots and transient absorption spectra recorded at indicated delay times when excited at 350 nm: TiO2 (a,c) and TiO2/Ce2S3 (TC5) (b,d). (e) Corresponding transient absorption kinetic traces for TiO2 and TC5 at 645 nm over 100 ps. (f) Schematic showing the photocatalytic mechanism over TiO2/Ce2S3. Reprinted with permission from Ref. [87]. Copyright 2021, American Chemical Society.
Fig. 13. (a) Photocatalytic H2-evolution activities of catalysts. PL spectra (b) and time-resolved PL spectra (c) of SCN, NMS and 19.3%-NMS/SCN. Electrostatic potentials of the SCN (001) (d) and NMS (002) (e) surfaces. (f) Schematic showing the photocatalytic mechanism over NMS/SCN. Reprinted with permission from Ref. [89]. Copyright 2021, Elsevier.
Mechanism | Photocatalyst | Synthesis | Morphology | Light source | Application | Production rate | Ref. |
---|---|---|---|---|---|---|---|
Type II | TiO2/CdIn2S4 | simple precipitation method | microspheres | sunlight | H2 evolution | 7.86 mmol h−1 g−1 | [ |
Type II | α-S/CdS | facile solvent-evapora- tion-deposition-precipitation method | α-S nanoparticles load on the surfaces of CdS nanorods | visible light, λ > 420 nm | H2 evolution | 10.01 mmol h−1 g−1 after 3 h of irradiation | [ |
Type II | CdS/ TpPa-1-COF | ion adsorption | microspheres | 300 W Xe lamp, λ ≥ 420 nm | NH3 production | 241 mmol g−1 h−1 | [ |
Type II | CdS/ZnIn2S4 | hydrothermal synthesis | rod-covered layer nanosheets | 300 W Xe lamp, λ = 420 nm | H2 evolution | 113 μmol h−1 | [ |
Type II | CdS/NiS | ion exchange | hollow cubes | 100 mW cm−2 LED, 420 nm | H2 evolution | 66.3 mmol g−1 h−1 | [ |
Type II | Pt-CdS/ g-C3N4-MnOx | mixing heating | nanorods | 300 W Xe lamp with a 400 nm cutoff filter | H2 evolution | 9.244 μmol h−1 | [ |
Type II | ZnIn2S4/BiPO4 | hydrothermal synthesis | dandelion-like flowers | 300 W Xe lamp | degradation of tetracycline | degraded 84% tetracycline (TC, 40 mg L−1) in 90 min | [ |
Z-scheme | Sv-ZnIn2S4/ MoSe2 | assisted hydrothermal method | flower-like microspheres | 300 W Xe Lamp with a 420 nm cut-off filter | H2 evolution | 63.21 mmol g−1 h−1 | [ |
Z-scheme | ZnIn2S4@MoO3 | in-site growth | nanowires grown on nanosheets | 300 W Xe Lamp with a λ > 420 nm cut-off filter | degradation of TC-HCl | 94.5% in 90 min (TC-HCl 100 mL, 30 mg L−1) | [ |
Z-scheme | AgVO3/ZnIn2S4 | two-step hydrothermal process. | nanosheets grown on flower-like microspheres | 250 W Xe lamp with a λ > 420 nm cut of filter | degradation of Cr(VI) to Cr(III) | 100% in 25 min (K2Cr2O7, 20 mg L−1)) | [ |
Z-scheme | Mo2C/ MoS2/In2S3 | one-pot solvothermal synthesis | porous flower-like microspheres | 350 W Xe Lamp with a 420 nm cut-off filter | degradation of Cr(VI) to Cr(III) | K2Cr2O7, 40 mg L−1 | [ |
Z-scheme | WO3‒x/ZnIn2S4 | oil bath heating | ultrathin nanosheets | 300W Xe lamp with a 400 nm cutoff filter | H2 evolution | 20.957 mmol g−1 h−1 | [ |
Z-scheme | Sn-In2O3/ In2S3 | in-situ gas-phase vulcanization | nanowire structures | 300 W Xe lamp with a 420 nm cutoff filter | reduction of CO2 to CH4 and CO | 0.41 and 1.03 μmol cm−2 h−1 | [ |
Z-scheme | CdS/MOF-5 | hydrothermal method | nanoparticles grows on the surfaces of rods | 300 W Xe lamp with a 420 nm cutoff filter | H2 evolution | 11.62 mmol h−1 g−1 | [ |
S-scheme | CdS/pyrene-alt-triphenylamine (CP) | electrostatic interaction | nanosheets | 350 W Xe arc lamp with 420 nm cut off filter | H2 evolution | 9.28 mmol h−1 g−1 | [ |
S-scheme | S-doped g-C3N4/ N-doped MoS2 | high temperature calcination | willow-leaf-like nanobelts | 300 W Xe lamp | H2 evolution | 658.5 μmol g−1 h−1 | [ |
S-scheme | COF/CdS | precipitation method | block-like cubes | 300 W Xe lamp with a 420 nm cut off filter | H2 evolution | 8670 μmol g−1 h−1 | [ |
S-scheme | MoS2/CoAl LDH | simple Hydrothermal method | 3D carnation-like structure | 300 W Xe lamp | H2 evolution | 17.1 μmol g−1 h−1 | [ |
S-scheme | CdS/Bi2WO6 | in-situ hydrothermal method | microspheres grown on monolayer nanosheets | 300 W Xe lamp | degradation of C2H4 | 100% in 15 min, 100 ppm C2H4 | [ |
S-scheme | MoSx/MnWO4 | solvothermal method | nanorods dispersed on amorphous | 300 W Xe lamp (λ > 420 nm) | O2 evolution | 267.8 μmol g−1 | [ |
Schottky junction | Mn0.2Cd0.8S/Ti3C2 | in-situ solvothermal method | nanorods | 300 W Xe lamp (λ > 420 nm) | H2 evolution | 15.73 mmol g−1 h−1 | [ |
Schottky junction | Ni-P/ZnS | in-situ photo- deposition | nanospheres | 300 W Xe lamp with a 420 nm cut-off filter | H2 evolution | 69.92 μmol g−1 h−1 | [ |
Schottky junction | CdS/Nb2CTx | electrostatically driven self-assembly | 1D nanorods grown on nanosheets | 300 W Xe lamp (λ ≥ 420 nm) | H2 evolution | 5.3 mmol g−1 h−1 | [ |
Table 1 Comparing typical metal-sulfide-based heterojunction systems.
Mechanism | Photocatalyst | Synthesis | Morphology | Light source | Application | Production rate | Ref. |
---|---|---|---|---|---|---|---|
Type II | TiO2/CdIn2S4 | simple precipitation method | microspheres | sunlight | H2 evolution | 7.86 mmol h−1 g−1 | [ |
Type II | α-S/CdS | facile solvent-evapora- tion-deposition-precipitation method | α-S nanoparticles load on the surfaces of CdS nanorods | visible light, λ > 420 nm | H2 evolution | 10.01 mmol h−1 g−1 after 3 h of irradiation | [ |
Type II | CdS/ TpPa-1-COF | ion adsorption | microspheres | 300 W Xe lamp, λ ≥ 420 nm | NH3 production | 241 mmol g−1 h−1 | [ |
Type II | CdS/ZnIn2S4 | hydrothermal synthesis | rod-covered layer nanosheets | 300 W Xe lamp, λ = 420 nm | H2 evolution | 113 μmol h−1 | [ |
Type II | CdS/NiS | ion exchange | hollow cubes | 100 mW cm−2 LED, 420 nm | H2 evolution | 66.3 mmol g−1 h−1 | [ |
Type II | Pt-CdS/ g-C3N4-MnOx | mixing heating | nanorods | 300 W Xe lamp with a 400 nm cutoff filter | H2 evolution | 9.244 μmol h−1 | [ |
Type II | ZnIn2S4/BiPO4 | hydrothermal synthesis | dandelion-like flowers | 300 W Xe lamp | degradation of tetracycline | degraded 84% tetracycline (TC, 40 mg L−1) in 90 min | [ |
Z-scheme | Sv-ZnIn2S4/ MoSe2 | assisted hydrothermal method | flower-like microspheres | 300 W Xe Lamp with a 420 nm cut-off filter | H2 evolution | 63.21 mmol g−1 h−1 | [ |
Z-scheme | ZnIn2S4@MoO3 | in-site growth | nanowires grown on nanosheets | 300 W Xe Lamp with a λ > 420 nm cut-off filter | degradation of TC-HCl | 94.5% in 90 min (TC-HCl 100 mL, 30 mg L−1) | [ |
Z-scheme | AgVO3/ZnIn2S4 | two-step hydrothermal process. | nanosheets grown on flower-like microspheres | 250 W Xe lamp with a λ > 420 nm cut of filter | degradation of Cr(VI) to Cr(III) | 100% in 25 min (K2Cr2O7, 20 mg L−1)) | [ |
Z-scheme | Mo2C/ MoS2/In2S3 | one-pot solvothermal synthesis | porous flower-like microspheres | 350 W Xe Lamp with a 420 nm cut-off filter | degradation of Cr(VI) to Cr(III) | K2Cr2O7, 40 mg L−1 | [ |
Z-scheme | WO3‒x/ZnIn2S4 | oil bath heating | ultrathin nanosheets | 300W Xe lamp with a 400 nm cutoff filter | H2 evolution | 20.957 mmol g−1 h−1 | [ |
Z-scheme | Sn-In2O3/ In2S3 | in-situ gas-phase vulcanization | nanowire structures | 300 W Xe lamp with a 420 nm cutoff filter | reduction of CO2 to CH4 and CO | 0.41 and 1.03 μmol cm−2 h−1 | [ |
Z-scheme | CdS/MOF-5 | hydrothermal method | nanoparticles grows on the surfaces of rods | 300 W Xe lamp with a 420 nm cutoff filter | H2 evolution | 11.62 mmol h−1 g−1 | [ |
S-scheme | CdS/pyrene-alt-triphenylamine (CP) | electrostatic interaction | nanosheets | 350 W Xe arc lamp with 420 nm cut off filter | H2 evolution | 9.28 mmol h−1 g−1 | [ |
S-scheme | S-doped g-C3N4/ N-doped MoS2 | high temperature calcination | willow-leaf-like nanobelts | 300 W Xe lamp | H2 evolution | 658.5 μmol g−1 h−1 | [ |
S-scheme | COF/CdS | precipitation method | block-like cubes | 300 W Xe lamp with a 420 nm cut off filter | H2 evolution | 8670 μmol g−1 h−1 | [ |
S-scheme | MoS2/CoAl LDH | simple Hydrothermal method | 3D carnation-like structure | 300 W Xe lamp | H2 evolution | 17.1 μmol g−1 h−1 | [ |
S-scheme | CdS/Bi2WO6 | in-situ hydrothermal method | microspheres grown on monolayer nanosheets | 300 W Xe lamp | degradation of C2H4 | 100% in 15 min, 100 ppm C2H4 | [ |
S-scheme | MoSx/MnWO4 | solvothermal method | nanorods dispersed on amorphous | 300 W Xe lamp (λ > 420 nm) | O2 evolution | 267.8 μmol g−1 | [ |
Schottky junction | Mn0.2Cd0.8S/Ti3C2 | in-situ solvothermal method | nanorods | 300 W Xe lamp (λ > 420 nm) | H2 evolution | 15.73 mmol g−1 h−1 | [ |
Schottky junction | Ni-P/ZnS | in-situ photo- deposition | nanospheres | 300 W Xe lamp with a 420 nm cut-off filter | H2 evolution | 69.92 μmol g−1 h−1 | [ |
Schottky junction | CdS/Nb2CTx | electrostatically driven self-assembly | 1D nanorods grown on nanosheets | 300 W Xe lamp (λ ≥ 420 nm) | H2 evolution | 5.3 mmol g−1 h−1 | [ |
Fig. 15. (a) Comparing photocatalytic H2-generation performance of SNO, CdS-D, X%SNO/CdS-D, 1%NiP-10%SNO/CdS-D, and 1%Pt- 10%SNO/CdS-D. (b) Photocatalytic H2-generation recyclabilities of SNO, CdS-D, 10%SNO/CdS-D, 1%NiP-10%SNO/CdS-D, and 1%Pt-10%SNO/ CdS-D. (c) Photocatalytic mechanism of Ni2P-SNO/CdS-D. Reprinted with permission from Ref. [126]. Copyright 2021, Elsevier.
Fig. 16. (a) H2-evolution rates of various catalysts. (b) Wavelength-dependent apparent quantum yield (AQY) of Sv-ZIS/5.0MoSe2; (c) SPV spectra of Sv-ZIS, MoSe2, and Sv-ZIS/MoSe2. (d) EPR spectra of DMPO-?O2? for Sv-ZIS/MoSe2 in methanol. Reprinted with permission from Ref. [32]. Copyright 2021, Springer Nature.
Fig. 17. (a) Depicting the formation of CdS/TiO2 HS. (b) Photocatalytic CO2-reduction activity testing with catalysts irradiated with full-spectrum light. (c) CdS/TiO2 HS 1:1 stability testing. In-situ DRIFTS spectra of surface-adsorbed carbonate species (d) and intermediates (e) in the photocatalytic CO2-reduction over CdS/TiO2 HS (0-60 min in the dark and 60-120 min under full-spectrum light). Reprinted with permission from Ref. [97]. Copyright 2020, Elsevier.
Fig. 18. (a) Photocatalytic CO2-reduction activities of ZnS, ZIS, ZnS/ZIS-X, and Phys. Mix. (b) Acetaldehyde formation rate (inset: shows stability data for ZnS/ZIS-3). (c) Schematic illustrating lattice mismatch and the strain effect between the cubic ZnS and hexagonal ZIS phases in ZnS/ZIS-3. (d) Direct Z-scheme for the ZnS/ZIS (n-n+) heterojunction in ZnS/ZIS-3. Reprinted with permission from Ref. [147]. Copyright 2022, Elsevier.
Fig. 19. (a) Photocatalytic degradation performance of WO3, N-WO3, and N-WO3/Ce2S3. (b) Cycling performance of N-WO3/Ce2S3 NBs during the photocatalytic degradation of phenol; ESR spectra of DMPO-?O2? (c) and DMPO-?OH (d) acquired for N-WO3/Ce2S3 NBs. Reprinted with permission from Ref. [164]. Copyright 2019, John Wiley and Sons.
Fig. 20. (a,b) FDTD electric-field distributions at a Ru/CoSx nanoparticle; (c) NH3-production rates for CN and Vs-CoS/Ru-Vs-CoS/CN. (d) AQEs (blue dots) for N2 fixation over Ru-Vs-CoS/CN. (e) N2RR pathway at the Ru (001)/CoSx(101) interface (optimized atomic structures are shown). Reprinted with permission from Ref. [171]. Copyright 2020, John Wiley and Sons.
Fig. 21. BH4+ (a) and NO3? (b) photocatalytic yields over WO3, CdS, and WO3/CdS. (c,d) EPR radical-trapping spectra for hydroxyl radicals (?OH) and superoxide radicals (?O2?). (e) Diagram showing photoelectron transfer from WO3 to CdS and the subsequent simultaneous oxidation and reduction of N2. Reprinted with permission from Ref. [172]. Copyright 2022, John Wiley and Sons.
Fig. 22. Escherichia coli (a) and Bacillus subtilis (b) regrowth curves in LB broth at 37 °C determined by the standard plate-counting method after treatment with various samples. (c) Scavenging experiments during photocatalytic disinfection with the CuS/Cu9S5 photocatalyst. (d) Photocatalytic bacterial inactivation mechanism under NIR light. Reprinted with permission from Ref. [26]. Copyright 2022, Elsevier.
Fig. 23. High-resolution Ti 2p (a) and Cd 3d (b) XPS profiles for TiO2/CdS in the dark or when irradiated with a 365-nm LED (UV-TiO2/CdS). (c) Schematic showing the charge-carrier migration mechanism. Reprinted with permission from Ref. [182]. Copyright 2018, John Wiley and Sons.
Fig. 24. EPR spectra of DMPO-?O2? in methanol (a) and DMPO-?OH in deionized H2O (b). KPFM surface potential images in the dark (c) and when irradiated (d). Reprinted with permission from Ref. [184]. Copyright 2022, Royal Society of Chemistry.
Fig. 25. (a,b) Photocatalytic H2- and PhCHO-production rates. (c) Photocatalytic H2-evolution activities of NP/ZIS-O using PhCH2OH, TEOA, Na2SO3/Na2S, and pure H2O. (d,e) In-situ EPR spectra of TEMPO in the presence of photogenerated holes and electrons and various additives over NP/ZIS-O. (f) EPR detection of the ?CH(OH)Ph radical by spin-trapping. Reprinted with permission from Ref. [186]. Copyright 2021, John Wiley and Sons.
Fig. 26. (a) Photocatalytic CO-production over α-MnS, X%α-MnS/Bi2MoO6 (X%M/BMO), and Bi2MoO4. (b) GC-MS 12CO and 13CO traces. (c) In-situ FT-IR spectra for the absorption and activation of CO2 on the Bi-5%M/BMO photocatalyst. (d) FT-IR spectra of γ-MnS and α-MnS. Reprinted with permission from Ref. [187]. Copyright 2021, Elsevier.
|
[1] | 赵彬彬, 钟威, 陈峰, 王苹, 别传彪, 余火根. 高晶化g-C3N4光催化剂: 合成、结构调控和光催化产氢[J]. 催化学报, 2023, 52(9): 127-143. |
[2] | 唐小龙, 李锋, 李方, 江燕斌, 余长林. 单原子催化剂在光催化和电催化合成过氧化氢中的研究进展[J]. 催化学报, 2023, 52(9): 79-98. |
[3] | 蔡铭洁, 刘艳萍, 董珂欣, 陈晓波, 李世杰. 漂浮型Bi2WO6/C3N4/碳布S型异质结光催化材料用于高效净化水体环境[J]. 催化学报, 2023, 52(9): 239-251. |
[4] | 孙丽娟, 于晓慧, 唐丽永, 王伟康, 刘芹芹. 构建K3PW12O40/CdS核壳S型异质结实现同步太阳能光催化分解水和选择性苯甲醇氧化反应[J]. 催化学报, 2023, 52(9): 164-175. |
[5] | 王思恺, 闵祥婷, 乔波涛, 颜宁, 张涛. 单原子催化: 追寻催化领域的“圣杯”[J]. 催化学报, 2023, 52(9): 1-13. |
[6] | 江梓聪, 程蓓, 张留洋, 张振翼, 别传彪. 氧化锌基梯型异质结光催化剂[J]. 催化学报, 2023, 52(9): 32-49. |
[7] | 刘博文, 蔡家杰, 张建军, 谭海燕, 程蓓, 许景三. MOF/CdS梯型光催化剂同时进行苯甲醇氧化和析氢反应及其机理研究[J]. 催化学报, 2023, 51(8): 204-215. |
[8] | 宋明明, 宋相海, 刘鑫, 周伟强, 霍鹏伟. ZnIn2S4/MOF-808微球结构S型异质结光催化剂的制备及其光还原CO2性能研究[J]. 催化学报, 2023, 51(8): 180-192. |
[9] | 邵秀丽, 李可, 李静萍, 程强, 王国宏, 王楷. 揭示NiS@Ta2O5纳米纤维中梯型电荷转移路径及光催化CO2转化性能[J]. 催化学报, 2023, 51(8): 193-203. |
[10] | 李世杰, 王春春, 董珂欣, 张鹏, 陈晓波, 李鑫. 新型MIL-101(Fe)/BiOBr S型异质催化剂用于高效光催化降解抗生素和还原六价铬: 光催化性能分析和光催化机理研究[J]. 催化学报, 2023, 51(8): 101-112. |
[11] | 李嘉明, 李源, 王小田, 杨直雄, 张高科. TiO2上原子分散的Fe位点促进光催化CO2还原: 增强的催化活性、 DFT计算和机制洞察[J]. 催化学报, 2023, 51(8): 145-156. |
[12] | 阎菲, 张由子, 刘思碧, 邹睿卿, Jahan B Ghasemi, 李炫华. 供体-受体型卟啉基金属有机框架实现有效电荷分离高效光催化析氢[J]. 催化学报, 2023, 51(8): 124-134. |
[13] | 孙利娟, 王伟康, 路平, 刘芹芹, 王乐乐, 唐华. 纳米高熵合金实现光催化剂肖特基势垒的调控用于光催化制氢与苯甲醇氧化耦合反应[J]. 催化学报, 2023, 51(8): 90-100. |
[14] | 刘海峰, 黄祥, 陈加藏. 电子态调控促进氢气无损耗纯化中CO的光致富集和氧化[J]. 催化学报, 2023, 51(8): 49-54. |
[15] | 袁鑫, 范海滨, 刘杰, 覃龙州, 王剑, 段秀, 邱江凯, 郭凯. 连续流技术在光氧化还原催化转化的最新进展[J]. 催化学报, 2023, 50(7): 175-194. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||