催化学报 ›› 2023, Vol. 49: 16-41.DOI: 10.1016/S1872-2067(23)64430-4
Mengistu Tulu Gonfaa, 申升a,*(), 陈浪a,*(
), 胡彪a, 周威a, 白张君a, 区泽堂b, 尹双凤a,*(
)
收稿日期:
2023-02-23
接受日期:
2023-04-10
出版日期:
2023-06-18
发布日期:
2023-06-05
通讯作者:
*电子信箱: sshen@hnu.edu.cn (申升),
huagong042cl@163.com (陈浪),
sf_yin@hnu.edu.cn (尹双凤).
基金资助:
Mengistu Tulu Gonfaa, Sheng Shena,*(), Lang Chena,*(
), Biao Hua, Wei Zhoua, Zhang-Jun Baia, Chak-Tong Aub, Shuang-Feng Yina,*(
)
Received:
2023-02-23
Accepted:
2023-04-10
Online:
2023-06-18
Published:
2023-06-05
Contact:
*E-mail: About author:
Sheng Shen received her bachelors’ degree from Wuhan University, China, in 2012. Then she moved to the United States and received her Ph.D. degree in chemistry from the University of Georgia, working on the electrodepostion of semiconductor materials under the supervision of Prof. John L. Stickney. She is currently an associate professor at Hunan University, China, where she focuses on the development of efficient photoelectrodes for solar based energy harvesting and conversion.Supported by:
摘要:
苯酚作为一种重要的有机化学品, 广泛用于制造树脂、合成橡胶、染料和药品等行业. 然而, 传统的苯酚生产方法——联苯法存在着许多问题, 如反应条件苛刻和产物纯度低等, 这些问题严重制约了苯酚的工业化生产应用. 因此, 开发一种高效、绿色的苯酚制备方法十分必要.
目前, 苯一步法制苯酚反应备受关注, 然而, 实现该反应难度很大. 首先, 苯分子的C(sp2)‒H键活化在化学反应中比较稳定, 难以高效活化. 其次, 相比惰性反应物苯, 产物苯酚分子本身更易氧化, 使反应的选择性调控成为挑战. 光催化选择性氧化苯制苯酚具有反应条件温和、选择性高和产物纯度高等优点, 是一种很有工业应用前景的苯酚制备方法.
本文系统总结了近年来多相光催化氧化苯制苯酚的研究进展, 包括从光催化剂设计原则、改性策略、反应机理分析、影响反应动力学的因素、反应器设计和光催化剂失活机制等方面. 首先, 单原子、层状双氢氧化物和金属簇构成的光催化剂具有高效催化作用和良好的反应选择性. 其次, 在光催化反应过程中, 光催化剂的设计和合成是非常关键的, 可以通过调节光催化剂的组成和结构来提高反应效率和选择性. 此外, 基于原位表征和密度泛函理论计算的机理研究也为光催化反应的优化提供了重要的理论基础. 此外, 介绍了光催化反应器的设计原理和操作要点, 以及光催化剂失活的原因和解决方案. 在未来的研究中, 可以考虑更多的应用新材料和新技术来设计和制备高效催化剂. 还可以利用先进的表征和理论计算方法更深入地研究光催化反应的机理, 并探索更多的反应条件和催化剂组合, 以提高光催化反应的效率和选择性. 在实际应用中, 光催化反应器的设计和操作也需要进一步完善, 以确保光催化反应的稳定性和可控性. 随着对光催化反应机理和催化剂设计的深入理解, 相信未来光催化苯制苯酚技术会有更多的突破和进展. 综上, 本文为光催化选择性氧化苯成为苯酚的研究提供了参考, 也为光催化反应的设计、优化和应用提供了一定的思路.
Mengistu Tulu Gonfa, 申升, 陈浪, 胡彪, 周威, 白张君, 区泽堂, 尹双凤. 光催化苯制苯酚的研究进展[J]. 催化学报, 2023, 49: 16-41.
Mengistu Tulu Gonfa, Sheng Shen, Lang Chen, Biao Hu, Wei Zhou, Zhang-Jun Bai, Chak-Tong Au, Shuang-Feng Yin. Research progress on the heterogeneous photocatalytic selective oxidation of benzene to phenol[J]. Chinese Journal of Catalysis, 2023, 49: 16-41.
Fig. 1. (a) Global phenol market demand by its derivatives in 2019. Adapted with permission from Ref. [3]. Copyright 2021, American Chemical Society. Representation of catalytic processes of benzene oxidation to phenol: (b) Sulfonation; (c) Chlorination; (d) Toulene benzoic acid process; (e) Cumene process; (f) Direct conversion to phenol [9].
Fig. 3. Band-edges, band gap energy positions of some semiconductors and relative redox potentials of the couples used to generate reactive oxygen species.
Fig. 5. Proposed reaction mechanism of the photocatalytic hydroxylation of benzene in (a) neutral or acidic conditions and (b) basic conditions. (c,d) Schematic of isotopic effect. Adapted with permission from Ref. [50]. Copyright 2012, American Chemical Society.
Fig. 6. (a) In situ ESR spectra of C16Qu-PW in reaction system (containing benzene 1.28 mmol, acetonitrile 10 mL, water 1 mL). (b) UV-vis spectra of recovered C16Qu-PW with different exposure time in air. (c) Proposed reaction route for C16Qu-PW photocatalyzed selective oxidation of benzene to phenol. Adapted with permission from Ref. [63]. Copyright 2021, Elsevier.
Fig. 7. Optimized structures of reactant, TS and product among benzene, H2O and H2O2 in the absence (a) and the presence (b) of Pt3 as co-catalyst for the hydroxylation of benzene to phenol. (c) Energy potentials for intrinsic reaction coordinates. Adapted with permission from Ref. [67]. Copyright 2020, MDPI. The author(s) and Catalysts published by the MDPI under the terms of the Creative Commons CC BY license (https://creative commons.org/licenses/by-ncnd/4.0/).
Fig. 8. Model for simulating the interface between g-C3N4-CuWO4 heterojunction for geometry optimization before optimization (a) and after (b) optimization. (c) Projected density of states (PDOS) of the pure g-C3N4 surface and g-C3N4-CuWO4 heterojunction surface from top to bottom, the dotted line represents the Fermi level. (d,e) Γ-point orbital-isoamplitude surface of the respective orbitals. Adapted with permission from Ref. [68]. Copyright 2022, Royal Society of Chemistry.
Fig. 11. (a) UV/Vis diffuse-reflectance spectra of Au@TiO2-microsphere composites. (b) Visible-light-induced catalytic oxidation of benzene with Au@TiO2 of 1 wt%-3 wt% of Au. (c) Mechanism of photocatalytic reaction for Au/TiO2 composed photocatalyst. Adapted with permission from Ref. [90]. Copyright 2011, Royal Society of Chemistry. (d) TEM images of 1Au/TV2, HRTEM images of 1Au/TV2, 3Au/TV2, SEM image of 1Au/TV2. (e) Possible mechanism of the photocatalytic oxidation of benzene to phenol proposed on the basis of experimental observations for Au/TV2. Adapted with permission from Ref. [22]. Copyright 2014, American Chemical Society.
Fig. 12. (a) Reaction scheme of surface modification of MCF by silylation. (b) Titanium oxide entrapped in cage-like mesopores of hydrophobically modified MCF for the hydroxylation of benzene. (c) Images of water contact angles on catalyst samples. Adapted with permission from [92]. Copyright 2011, Elsevier.
Fig. 13. Proposed reaction mechanisms for phenol production over Pt/WO3 (a) and Pt/TiO2 (b) photocatalysts. Adapted with permission from Ref. [16]. Copyright 2014, Royal Society of Chemistry. (c) Proposed mechanism of photocatalytic benzene hydroxylation to phenol over the hierarchical heterostructure of Bi2WO6/CdWO4. Adapted with permission from Ref. [102]. Copyright 2018, Elsevier.
Oxidant | Catalyst | Reaction condition | Yield (%) | Sel. (%) | Ref. |
---|---|---|---|---|---|
H2O | Au@TiO2 | 300 W Xe lamp (λ ≥ 400 nm), RT, 3 h, H2O (50 mL), catal. (50 mg), benzene (0.07 mL) | 63 | 91 | [ |
H2O2 | Au/Ti0.98V0.02 O2 | UV light (200 nm ≤ λ ≤ 400 nm), RT, 18 h, CH3CN (2 mL), H2O2 (25%, catal. (30 mg), 2 mL), benzene (1 mL) | 16 | 88 | [ |
Pd/CeO2/TiO2 | Xe lamp λ > 420 nm, 80 °C, 10 h, CH3CN (10 mL), catal. (100 mg), benzene (1.36 mL), benzene:H2O2 (molar ratio) = 1:5 | 69.4 | 95 | [ | |
N2O | Pt/TiO2 | 450 W Xe lamp (λ > 300 nm), 4 h, benzene: H2O:CH3CN (0.05 mL: 24 mL: 1 mL), PH (3.5), air, catal. (25 mg), benzene (0.05 mL) | 2 | 100 | [ |
H2O | Cu/Ti/CNT | Low pressure Hg light source, (λ > 254 nm), H2O (20 mL), catal. (100 mg), benzene (20 mL) | 52 | 76 | [ |
TiO2/MCF | 300W Xe lamp (λ > 320 m), 2 h, CH3CN (0.3 mL), and H2O (29.7 mL), catal. (30 mg), benzene (2.6 × 10-4 mL) | — | 50 | [ | |
Pt/TiO2 | 300 W Xe lamp, RT, 3 h, H2O (1 mL), catal. (20 mg), benzene (1 mL). | 9 | 75 | [ | |
H2O2 | FeVCu/TiO2 | Black light blue fluorescent bulb, 30 °C, 4 h, CH3CN (40 mL), catal. (10 mg), benzene:H2O2 = 0.5 | 9.7 | 52 | [ |
Ti0.98Fe0.01Cr0.01O2 | 450 W Hg lamp (200 nm ≤ λ ≤ 400 nm), RT, 12 h, CH3CN (2 mL), H2O2 (25%, 2 mL), catal. (30 mg), benzene (1 mL) | 25.2 | 90 | [ |
Table 1 Summary of photocatalytic performances based on hybridized TiO2 for the selective transformation of benzene to Phenol.
Oxidant | Catalyst | Reaction condition | Yield (%) | Sel. (%) | Ref. |
---|---|---|---|---|---|
H2O | Au@TiO2 | 300 W Xe lamp (λ ≥ 400 nm), RT, 3 h, H2O (50 mL), catal. (50 mg), benzene (0.07 mL) | 63 | 91 | [ |
H2O2 | Au/Ti0.98V0.02 O2 | UV light (200 nm ≤ λ ≤ 400 nm), RT, 18 h, CH3CN (2 mL), H2O2 (25%, catal. (30 mg), 2 mL), benzene (1 mL) | 16 | 88 | [ |
Pd/CeO2/TiO2 | Xe lamp λ > 420 nm, 80 °C, 10 h, CH3CN (10 mL), catal. (100 mg), benzene (1.36 mL), benzene:H2O2 (molar ratio) = 1:5 | 69.4 | 95 | [ | |
N2O | Pt/TiO2 | 450 W Xe lamp (λ > 300 nm), 4 h, benzene: H2O:CH3CN (0.05 mL: 24 mL: 1 mL), PH (3.5), air, catal. (25 mg), benzene (0.05 mL) | 2 | 100 | [ |
H2O | Cu/Ti/CNT | Low pressure Hg light source, (λ > 254 nm), H2O (20 mL), catal. (100 mg), benzene (20 mL) | 52 | 76 | [ |
TiO2/MCF | 300W Xe lamp (λ > 320 m), 2 h, CH3CN (0.3 mL), and H2O (29.7 mL), catal. (30 mg), benzene (2.6 × 10-4 mL) | — | 50 | [ | |
Pt/TiO2 | 300 W Xe lamp, RT, 3 h, H2O (1 mL), catal. (20 mg), benzene (1 mL). | 9 | 75 | [ | |
H2O2 | FeVCu/TiO2 | Black light blue fluorescent bulb, 30 °C, 4 h, CH3CN (40 mL), catal. (10 mg), benzene:H2O2 = 0.5 | 9.7 | 52 | [ |
Ti0.98Fe0.01Cr0.01O2 | 450 W Hg lamp (200 nm ≤ λ ≤ 400 nm), RT, 12 h, CH3CN (2 mL), H2O2 (25%, 2 mL), catal. (30 mg), benzene (1 mL) | 25.2 | 90 | [ |
Oxidant | Catalyst | Reaction condition | Yield (%) | Sel. (%) | Ref. |
---|---|---|---|---|---|
O2 | C16Qu-PW (IL-POM) | 500 W Hg lamp (λ ≤ 365 nm), room temp. 10 h, CH3CN (10 mL) and H2O (1 mL), air, catal. (0.15 mg), benzene (0.1 mL) | 21 | 99 | [ |
Bi2WO6/CdWO4 | 300 W Xenon lamp (λ ≥ 400 nm), 3 h, H2O (0.1 mL) and CH3CN (3 mL), O2 (3 mL min‒1), catal. (50 mg), benzene (0.04 mL) | 5.8 | 99 | [ | |
H2O | Pt/WO3 | 300 W Xe lamp (400 < λ < 500 nm), 4 h, H2O (7.5 mL), catal. (10 mg), benzene (0.002 mL) | — | 79 | [ |
WO3QD | Hg lamp (270 < λ < 410 nm), 40 h, H2O (29 mL), catal. (10 mg), benzene (0.1 mL). | 8.3 | 99 | [ |
Table 2 Summary of photocatalytic performances based on hybridized tungsten compounds for the selective transformation of benzene to Phenol.
Oxidant | Catalyst | Reaction condition | Yield (%) | Sel. (%) | Ref. |
---|---|---|---|---|---|
O2 | C16Qu-PW (IL-POM) | 500 W Hg lamp (λ ≤ 365 nm), room temp. 10 h, CH3CN (10 mL) and H2O (1 mL), air, catal. (0.15 mg), benzene (0.1 mL) | 21 | 99 | [ |
Bi2WO6/CdWO4 | 300 W Xenon lamp (λ ≥ 400 nm), 3 h, H2O (0.1 mL) and CH3CN (3 mL), O2 (3 mL min‒1), catal. (50 mg), benzene (0.04 mL) | 5.8 | 99 | [ | |
H2O | Pt/WO3 | 300 W Xe lamp (400 < λ < 500 nm), 4 h, H2O (7.5 mL), catal. (10 mg), benzene (0.002 mL) | — | 79 | [ |
WO3QD | Hg lamp (270 < λ < 410 nm), 40 h, H2O (29 mL), catal. (10 mg), benzene (0.1 mL). | 8.3 | 99 | [ |
Fig. 14. (a) Illustration of the structural benefits of FeVO4@OS for photocatalytic benzene hydroxylation reaction. (b) ICP results of iron leaching across five runs. (c) Selective hydroxylation of benzene to phenol over FeVO4 and silylated FeVO4. Adapted with permission from Ref. [104]. Copyright 2021, Royal Society of Chemistry.
Fig. 15. (a) Optical contact angle characterization of ZFO and ZFO@C-2. (b) Benzene reactant adsorption extent of ZFO and ZFO@C-2. Adapted with permission from Ref. [60]. Copyright 2021, Elsevier.
Fig. 16. (a) Topological view of MIL-100 with MTN-type zeolitic architecture and view of the structure of MIL-68 involving two types (hexagonal and trigonal) of channels running through the c-axis. (b) Possible reaction mechanism for the photocatalytic benzene hydroxylation over MIL-100(Fe). Adapted with permission from Ref. [106]. Copyright 2021, American Chemical Society. (c) Preparation of the NH2-MIL-88/PMo10V2-3 catalyst, Adapted with permission from Ref. [108]. Copyright 2021, Royal Society of Chemistry.
Fig. 17. (a) Possible reaction mechanism for photocatalytic benzene hydroxylation over CNTs@FcPOP. Adapted with permission from Ref. [108]. Copyright 2021, Royal Society of Chemistry. (b) Proposed reaction mechanism for benzene hydroxylation by Fc-CN.
Catalyst | Reaction condition | Yield (%) | Sel. (%) | Ref. |
---|---|---|---|---|
NH2-MIL-88/PMo10V2-3 | 5 W LED (≥ 320 nm), 60 °C, 3 h, CH3CN (2 mL), CH3COOH (3 mL), H2O2 (1 mL), catal. (50 mg), benzene (1 mL) | 12.4 | 99 | [ |
MIL-68 (Fe) | 300 W Xe lamp (λ ≥ 420 nm), 8 h, solvent (4 mL), H2O2 (30%, 0.039 mL), catal. (10 mg), benzene (0.044 mL) | — | 98 | [ |
CNTs@Fc-POP | 300 W, 4 h, CH3CN (4 mL), H2O (4 mL), H2O2 (0.8 mL), catal. (50 mg), benzene (0.2 mL) | 25 | — | [ |
FeVO4@TMOS | 300 W Xe lamp (λ > 420 nm), 24 °C, CH3CN (3 mL), H2O (3 mL), H2O2 (30%, 2 mL), catal. (30 mg), benzene (0.1 mL) | 20 | 98 | [ |
FePc | Hg lamp, RT, 6 h, CH3CN (5 mL), H2O2 (3 mL), catal. (30 mg), benzene (1 mL), | 15.2 | 99 | [ |
ZFO@C-2 | 300 W Xe lamp (λ < 420 nm), RT, CH3CN (3 mL), H2O (3 mL), H2O2 (30 wt%, 0.5 mL), catal. (30 mg), benzene (0.1 mL). | 15.5 | 99.4 | [ |
Table 3 Summary of photocatalytic performances based on hybridized iron compounds for the selective transformation of benzene to phenol.
Catalyst | Reaction condition | Yield (%) | Sel. (%) | Ref. |
---|---|---|---|---|
NH2-MIL-88/PMo10V2-3 | 5 W LED (≥ 320 nm), 60 °C, 3 h, CH3CN (2 mL), CH3COOH (3 mL), H2O2 (1 mL), catal. (50 mg), benzene (1 mL) | 12.4 | 99 | [ |
MIL-68 (Fe) | 300 W Xe lamp (λ ≥ 420 nm), 8 h, solvent (4 mL), H2O2 (30%, 0.039 mL), catal. (10 mg), benzene (0.044 mL) | — | 98 | [ |
CNTs@Fc-POP | 300 W, 4 h, CH3CN (4 mL), H2O (4 mL), H2O2 (0.8 mL), catal. (50 mg), benzene (0.2 mL) | 25 | — | [ |
FeVO4@TMOS | 300 W Xe lamp (λ > 420 nm), 24 °C, CH3CN (3 mL), H2O (3 mL), H2O2 (30%, 2 mL), catal. (30 mg), benzene (0.1 mL) | 20 | 98 | [ |
FePc | Hg lamp, RT, 6 h, CH3CN (5 mL), H2O2 (3 mL), catal. (30 mg), benzene (1 mL), | 15.2 | 99 | [ |
ZFO@C-2 | 300 W Xe lamp (λ < 420 nm), RT, CH3CN (3 mL), H2O (3 mL), H2O2 (30 wt%, 0.5 mL), catal. (30 mg), benzene (0.1 mL). | 15.5 | 99.4 | [ |
Fig. 19. (a) Ultraviolet-visible diffuse reflectance spectra (UV-vis DRS) of h-BCNx and h-BN. (b) Tauc plots of h-BN and h-BCNx by UV-vis DRS. (c) Proposed mechanism for photocatalytic hydroxylation of benzene by h-BCN combined with FeCl3. (d) Time course of catalytic performance for benzene oxidation to phenol under visible light irradiation (λ ≥ 420 nm). (e) Cyclic runs in the photocatalytic oxidation of benzene to phenol. Adapted with permission from Ref. [120]. Copyright 2019, Elsevier.
Fig. 20. (a) Proposed mechanism for the oxidation of benzene by the Au-Pd/g-C3N4 catalyst under visible light irradiation. Adapted with permission from Ref. [121]. Copyright 2018, American Chemical Society. Copyright 2018, American Chemical Society. (b,c) Optical absorption spectra of FeCl3/mpg-C3N4. (d) Possible reaction mechanism for the catalytic oxidation of benzene by FeCl3/mpg-C3N4 hybrids. Adapted with permission from Ref. [12]. Copyright 2013, Royal Society of Chemistry.
Fig. 21. (a) Stacked g-C3N4 sheets function as an all-organic solid-state photocatalyst promoting redox reactions with visible light. (b) Chemical interaction of benzene and defective g-C3N4 via HOMO-LUMO hybridization of melem and benzene. Adapted with permission from Ref. [123]. Copyright 2009, American Chemical Society.
Fig. 22. (a) N2 adsorption-desorption isotherms of TS-1 and Fe-CN/TS-1-2. The inset is the corresponding BJH pore-size distribution curves. (b) Electrochemical impedance in the dark. (c) STEM images of Fe-CN/TS-1 (a,b), elemental mapping images of C, N, and Fe. Adapted with permission from Ref. [125]. Copyright 2014, Elsevier.
Fig. 23. Proposed direct Z-scheme reaction mechanism of photocatalytic system. Adapted with permission from Ref. [68]. Copyright 2022, Royal Society of Chemistry.
Fig. 24. (a) Illustration of the preparation of SA-Cu-TCN. (b,c) Calculated charge difference surfaces of the Cu-N3 and Cu-N4 coordination systems. Adapted with permission from Ref. [127]. Copyright 2020, Wiley-VCH.
Fig. 25. (a,b) XANES of Zn2Ti-LDH. (c) ESR of Zn2Ti-LDH. (d) Model of Oxygen vacancy Zn2Ti-LDH. Adapted with permission from Ref. [134]. Copyright 2020, Elsevier.
Catalyst | Reaction condition | Yield (%) | Sel. (%) | Ref. |
---|---|---|---|---|
FeCl3/mpg-C3N4 | 100 W Hg lamp (λ > 420 nm), 60 °C, 4 h, H2O (2 mL) and CH3CN (2 mL), H2O2 (30%, 0.255 mL), catal. (25 mg), benzene (0.39 mL). | — | 97 | [ |
h-BCN/FeCl3 | 300 W Xe, lamp (λ > 420 nm), 60 °C, 2 h, H2O (4 mL) and CH3CN (4 mL), H2O2 (0.15 mL), catal. (50 mg) with FeCl3 (3 wt%), benzene (0.8 mL) | 14 | 88 | [ |
Fe@NC | 60 °C, 12 h, CH3CN (3 mL), H2O (3 mL), H2O2 (2 mL), catal. (30 mg), benzene (0.25 mL) | 14.5 | 95 | [ |
Au-Pd/g-C3N4 | 100 W Hg lamp, light source 10 cm, 50 °C, 2 h, CH3CN (5 mL), H2O2 (25%, 2 mL), catal. (10 mg), benzene (1 mL). | 26 | 100 | [ |
Fe-g-C3N4/SBA-15 | 500 W Xe lamp (λ > 420 nm), 60 °C, 4 h, H2O (4 mL), C2H5OH (5 mL) and CH3CN (4 mL), H2O2 (30%, 0.51 mL), catal. (50 mg), benzene (0.8 mL). | — | 21 | [ |
Fe-g-C3N4-LUS-1 | 125 W Mercury lamp, 60 °C, 4 h, CH3CN (4 mL), H2O2 (30%, 0.5 mL), catal. (0.05 g), benzene (1 mL). | 5 | 64 | [ |
Fe-CN/TS-1 | 300 W Xe lamp (λ > 420 nm), 60 °C, 4 h, CH3CN (4 mL) and H2O (4 mL), H2O2 (30%, 0.51 mL), catal. (50 mg), benzene (0.8 mL). | 10 | 18 | [ |
SA-Cu-TCN | Visible light (λ > 420 nm), 50 °C, 12 h, CH3CN (6 mL), H2O2 (6 mL, 30 wt%), catal. (20.0 mg), benzene (0.4 mL). | — | 99.9 | [ |
Ni-CuWO4/g-C3N4 | Sun light, 0.25 h, H2O (0.2 mL), H2O2 (30%), (0.5 mL), catal. (20 mg), benzene (1 mL) | 81.5 | 98.5 | [ |
Table 4 Summary of photocatalytic performances based on hybridized g-C3N4 compounds for the selective transformation of benzene to Phenol.
Catalyst | Reaction condition | Yield (%) | Sel. (%) | Ref. |
---|---|---|---|---|
FeCl3/mpg-C3N4 | 100 W Hg lamp (λ > 420 nm), 60 °C, 4 h, H2O (2 mL) and CH3CN (2 mL), H2O2 (30%, 0.255 mL), catal. (25 mg), benzene (0.39 mL). | — | 97 | [ |
h-BCN/FeCl3 | 300 W Xe, lamp (λ > 420 nm), 60 °C, 2 h, H2O (4 mL) and CH3CN (4 mL), H2O2 (0.15 mL), catal. (50 mg) with FeCl3 (3 wt%), benzene (0.8 mL) | 14 | 88 | [ |
Fe@NC | 60 °C, 12 h, CH3CN (3 mL), H2O (3 mL), H2O2 (2 mL), catal. (30 mg), benzene (0.25 mL) | 14.5 | 95 | [ |
Au-Pd/g-C3N4 | 100 W Hg lamp, light source 10 cm, 50 °C, 2 h, CH3CN (5 mL), H2O2 (25%, 2 mL), catal. (10 mg), benzene (1 mL). | 26 | 100 | [ |
Fe-g-C3N4/SBA-15 | 500 W Xe lamp (λ > 420 nm), 60 °C, 4 h, H2O (4 mL), C2H5OH (5 mL) and CH3CN (4 mL), H2O2 (30%, 0.51 mL), catal. (50 mg), benzene (0.8 mL). | — | 21 | [ |
Fe-g-C3N4-LUS-1 | 125 W Mercury lamp, 60 °C, 4 h, CH3CN (4 mL), H2O2 (30%, 0.5 mL), catal. (0.05 g), benzene (1 mL). | 5 | 64 | [ |
Fe-CN/TS-1 | 300 W Xe lamp (λ > 420 nm), 60 °C, 4 h, CH3CN (4 mL) and H2O (4 mL), H2O2 (30%, 0.51 mL), catal. (50 mg), benzene (0.8 mL). | 10 | 18 | [ |
SA-Cu-TCN | Visible light (λ > 420 nm), 50 °C, 12 h, CH3CN (6 mL), H2O2 (6 mL, 30 wt%), catal. (20.0 mg), benzene (0.4 mL). | — | 99.9 | [ |
Ni-CuWO4/g-C3N4 | Sun light, 0.25 h, H2O (0.2 mL), H2O2 (30%), (0.5 mL), catal. (20 mg), benzene (1 mL) | 81.5 | 98.5 | [ |
Fig. 26. Effect of temperature on benzene conversion to phenol in terms of phenol yield (%) and selectivity (%). Adapted with permission from Ref. [121]. Copyright 2018, American Chemical Society.
Fig. 28. SEM images of FeVO4@TMOS-5th (a), FeVO4@TMOS (b), ICP results of iron leaching during each run (c). Adapted with permission from Ref. [104]. Copyright 2021, Royal Society of Chemistry.
Fig. 30. Two-phase membrane reactor: non membrane zone (1), lamp (2), non-membrane zone stirred solution (3), peristaltic pump that withdraws the solution from the photocatalytic zone to the separation zone (4), permeation module (5), aqueous phase compartment (6), Organic strip containing compartment (7). Adapted with permission from Ref. [137]. Copyright 209, Elsevier.
Fig. 31. Roadmap for assisting reaction development in photocatalysis using mechanistic studies. Adapted with permission from Ref. [168]. Copyright 2019, Wiley-VCH.
Fig. 33. Schematic of the encapsulation of metal nanoparticles in a matrix of covalently cross-linked dendrimers. Adapted with permission from Ref. [172]. Copyright 2009, De Gruyter.
|
[1] | 蔡铭洁, 刘艳萍, 董珂欣, 陈晓波, 李世杰. 漂浮型Bi2WO6/C3N4/碳布S型异质结光催化材料用于高效净化水体环境[J]. 催化学报, 2023, 52(9): 239-251. |
[2] | 孙丽娟, 于晓慧, 唐丽永, 王伟康, 刘芹芹. 构建K3PW12O40/CdS核壳S型异质结实现同步太阳能光催化分解水和选择性苯甲醇氧化反应[J]. 催化学报, 2023, 52(9): 164-175. |
[3] | 孙利娟, 王伟康, 路平, 刘芹芹, 王乐乐, 唐华. 纳米高熵合金实现光催化剂肖特基势垒的调控用于光催化制氢与苯甲醇氧化耦合反应[J]. 催化学报, 2023, 51(8): 90-100. |
[4] | 袁鑫, 范海滨, 刘杰, 覃龙州, 王剑, 段秀, 邱江凯, 郭凯. 连续流技术在光氧化还原催化转化的最新进展[J]. 催化学报, 2023, 50(7): 175-194. |
[5] | 孟帅奇, 李忠玉, 张鹏, Francisca Contreras, 季宇, Ulrich Schwaneberg. 深度学习指导的热裂褐藻角质酶工程用于促进PET解聚[J]. 催化学报, 2023, 50(7): 229-238. |
[6] | 夏思源, 李奇远, 张仕楠, 许冬, 林秀, 孙露菡, 许景三, 陈接胜, 李国栋, 李新昊. Pd纳米立方体异质结尺寸依赖的电子界面效应对苯酚加氢反应的促进作用[J]. 催化学报, 2023, 49(6): 180-187. |
[7] | 马多征, 李相呈, 刘闯, Caroline Versluis, 叶迎春, 王振东, Eelco T. C. Vogt, Bert M. Weckhuysen, 杨为民. SCM-36分子筛纳米片用于乙烯和2,5-二甲基呋喃转化制可再生对二甲苯[J]. 催化学报, 2023, 47(4): 200-213. |
[8] | 李倩, 刘䶮, 李灿. 钯催化不对称烯丙基化/去对称化反应合成无保护基的2-喹啉酮骨架环状氨基酸[J]. 催化学报, 2023, 47(4): 222-228. |
[9] | 李宁, 高雪云, 苏俊珲, 高旸钦, 戈磊. 类金属WO2/g-C3N4复合光催化剂的构造及其优异的光催化性能[J]. 催化学报, 2023, 47(4): 161-170. |
[10] | 张志普, 卢珊珊, 张兵, 史艳梅. 揭示硫掺杂的碳材料在水电氧化过程中活性苯醌基团及惰性硫残留物的形成[J]. 催化学报, 2023, 47(4): 129-137. |
[11] | 王宁宁, 王硕, 李灿, 李晨阳, 刘春江, 陈闪山, 章福祥. ZrO2修饰均匀氮掺杂氧化物MgTa2O6-xNx以提升其光催化分解水性能[J]. 催化学报, 2023, 54(11): 220-228. |
[12] | 刘伟旭, 贺唱, 朱博文, 朱恩伟, 张亚宁, 陈云宁, 李军山, 朱永法. 利用有机超分子光催化剂在太阳光下处理污水的研究进展[J]. 催化学报, 2023, 53(10): 13-30. |
[13] | 雷一鸣, 叶金花, Jordi García-Antón, 刘慧敏. 内建电场辅助光催化甲烷干重整的研究进展[J]. 催化学报, 2023, 53(10): 72-101. |
[14] | 杨辉, 代凯, 张金锋, Graham Dawson. 无机-有机杂化光催化剂: 合成、机理及应用[J]. 催化学报, 2022, 43(8): 2111-2140. |
[15] | 吴玉兰, 祁明雨, 谭昌龙, 唐紫蓉, 徐艺军. CdS/WO3复合材料用于光催化选择性芳香醇氧化及析氢反应[J]. 催化学报, 2022, 43(7): 1851-1859. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||