催化学报 ›› 2023, Vol. 55: 137-158.DOI: 10.1016/S1872-2067(23)64551-6
王伟康a,b, 梅少斌a, 蒋浩朋a, 王乐乐a, 唐华c, 刘芹芹a,*()
收稿日期:
2023-09-18
接受日期:
2023-10-22
出版日期:
2023-12-18
发布日期:
2023-12-07
通讯作者:
*电子信箱: 基金资助:
Weikang Wanga,b, Shaobin Meia, Haopeng Jianga, Lele Wanga, Hua Tangc, Qinqin Liua,*()
Received:
2023-09-18
Accepted:
2023-10-22
Online:
2023-12-18
Published:
2023-12-07
Contact:
*E-mail: About author:
Qinqin Liu is a professor in School of Materials Science and Engineering of Jiangsu University. Her current research interests are to develop new photocatalytic materials for energy applications, such as CO2 reduction, water oxidation, O2 reduction and H2 evolution. She won the second prize of the Science and Technology Invention Award of the Ministry of Education. She served as a member of the Youth Council of China Photosensitive Society, a member of the Photocatalysis Professional Committee of China Photosensitive Society, a member of China Chemical Society and a review expert of many international journals.
Supported by:
摘要:
近年来, 绿色可持续的太阳能转换策略成为了研究热点. 迄今, 已经有多种光催化剂被研发出来并应用于能源和环境领域. 其中, 二氧化钛(TiO2)基半导体光催化剂因其成本低、生物相容性好、光/热稳定和环境友好等优点, 成为了研究最多的光催化材料之一. 然而, TiO2基光催化剂存在禁带宽度较大, 光生载流子复合严重和表面活性中心不足等问题严重限制了其大规模应用. 因此, 研究人员探索了多种策略, 包括杂原子掺杂、晶面调控、负载金属助催化剂和构建异质结等, 以进一步提升TiO2基光催化剂的性能. 研究表明, 与对单一组分光催化剂进行改性修饰相比, 设计构建异质结复合材料是更有效的提升TiO2基光催化剂性能的策略.
新兴的梯(S)型异质结机制不仅有效促进光生载流子的空间分离和转移, 同时可以使催化剂体系保留较好的氧化还原能力, 有利于提高光催化反应性能. 目前, 有关TiO2基S型异质结光催化剂的研究报道较多, 但有关此类光催化材料的系统性、评论性的综述文章不多. 因此, 有必要对TiO2基S型异质结光催化剂的最新研究成果进行总结. 本文首先从异质结光催化剂的理论发展入手, 探讨了Ⅱ型异质结、传统Z型体系以及新兴的S型异质结光催化剂的发展历程, 相关机理与区别. 然后深入阐述了S型异质结在促进电荷载流子分离以及增强光催化体系的氧化还原能力方面的突出优势. 并且, 重点总结了高效TiO2基S型异质结光催化剂的设计理念, 包括TiO2组分的缺陷/晶面工程、多维纳米结构组合、有机-无机材料杂化和界面化学键合. 详细介绍了以TiO2基S型异质结为典型例子的电荷转移表征技术的实际应用, 包括自由基捕获电子顺磁共振、内建电场评估、原位辐照X射线光电子能谱、开尔文探针力显微镜和飞秒超快吸收光谱. 此外, 简要列举了TiO2基S型异质结光催化剂在分解水产氢、二氧化碳还原、过氧化氢合成和水处理等领域的最新研究进展. 最后, 围绕TiO2基S型异质结催化剂的定向设计和制备、构筑界面电荷转移通道、关注催化活性及材料稳定性、发展原位表征技术以及器件设计等方向的研究提出了展望.
综上, 本文对TiO2基S型异质结光催化剂的研究进展进行了系统性的综述, 希望对更深入理解和设计高效的S型异质结光催化剂提供一定的参考.
王伟康, 梅少斌, 蒋浩朋, 王乐乐, 唐华, 刘芹芹. 二氧化钛基S型异质结光催化剂的研究进展[J]. 催化学报, 2023, 55: 137-158.
Weikang Wang, Shaobin Mei, Haopeng Jiang, Lele Wang, Hua Tang, Qinqin Liu. Recent advances in TiO2-based S-scheme heterojunction photocatalysts[J]. Chinese Journal of Catalysis, 2023, 55: 137-158.
Fig. 4. TEM images of T-001/COF (a) and T-101/COF (b) heterostructures. (c) S-scheme mechanism of prepared samples. Reprinted with permission from Ref. [24]. Copyright 2022, Elsevier.
Fig. 5. TEM images of T-101/CsPbBr3 (a) and corresponding elemental mappings (b). Work function of CsPbBr3 (c), T-001 (d) and T-101 (e). (f) Energy transfer mechanism diagram. Reprinted with permission from Ref. [26]. Copyright 2023, Elsevier.
Fig. 6. (a) Synthesis process of Co2P/PC-b-TiO2 composite. HR-TEM image (b) and DF-STEM and elemental mappings (c) of Co2P/PC-b-TiO2. Oxygen type ratios (d), ESR spectra (e) and UV-vis diffuse reflectance spectra (f) of prepared photocatalysts. Reprinted with permission from Ref. [30]. Copyright 2022, Elsevier.
Fig. 7. (a?c) TEM, STEM, and HR-TEM images of TC2. In-situ (collected under UV-vis light irradiation) and ex-situ XPS spectra of Ti 2p (d), O 1s (e), and Br 3d (f) of TiO2, CsPbBr3, and TC2. Reprinted with permission from Ref. [32]. Copyright 2020, Springer Nature.
Fig. 8. TEM images of CN (a), TiO2 nanodots (b) and TOCN (c) composites. (d) HR-TEM image of TOCN. (e) Schematic diagram of S-scheme mechanism of TOCN. Reprinted with permission from Ref. [33]. Copyright 2022, Elsevier.
Fig. 9. FESEM images of TiO2 nanofibers (a), ZnIn2S4 nanosheets (b) and TZIS2 composite (c). TEM (d), HR-TEM (e) and EDX mapping images (f) of TZIS2. (g) The diagram of S-scheme mechanism. Reprinted with permission from Ref. [35]. Copyright 2022, Elsevier.
Fig. 10. (a) Schematic representation of 2D/2D Bi2O3/TiO2 S-scheme heterojunction. (b) TEM and HR-TEM images of TB-9. In-situ XPS spectra Ti 2p (c) and Bi 4f (g) of TB-9 sample tested in dark and light. Reprinted with permission from Ref. [36]. Copyright 2022, Elsevier.
Fig. 11. (a) Schematic of photocatalysts fabrication. Time-resolved transient photoluminescence (TRPL) spectra (b), PL spectra (c) and EIS Nyquit plots (d) of prepared samples. (e) Comparison of type-II and S-scheme heterojunction mechanism. Reprinted with permission from Ref. [39]. Copyright 2022, Elsevier.
Fig. 12. Schematic synthetic processes (a) and S-scheme charge transfer pathway (b) of TiO2@BTTA heterojunction. (c) N2 adsorption-desorption isotherms and pore size distributions (inset). UV-vis DRS spectra (d) and photocatalytic yields (e) of obtained samples. Reprinted with permission from Ref. [42]. Copyright 2023, Elsevier.
Fig. 13. (a) TEM and HR-TEM images of TiO2/BaTiO3 sample. XPS spectra of Ti 2p (b) and O 1s (c) of prepared samples. (d) Electron local function of TiO2/BaTiO3. Reprinted with permission from Ref. [46]. Copyright 2023, Elsevier.
Fig. 14. (a) TEM image of SCNT6. (b) Photocatalytic activities of SCNT6 photocatalyst tested with different scavengers. ESR spectra of SCNT6: DMPO-?O2- (c) and ?OH (d). In-situ high resolution XPS Ti 2p (e) and N 1s (f) spectra of TiO2, SCN and SCNT6 samples. Reprinted with permission from Ref. [49]. Copyright 2021, Elsevier.
Fig. 15. (a) Diagram of TiO2/Znln2S4 heterojunction. Photocatalytic Cr(VI) removal activities (b) and pH value effects (c) by prepared samples. (d) Schematic illustration of IEF driven charge transfer. SPV spectroscopy of photocatalysts (e) and IEF intensity (f) of as-synthesized samples. Reprinted with permission from Ref. [51]. Copyright 2023, Elsevier.
Fig. 16. (a) TEM image and diagram (inset) of TiO2@Znln2S4 heterojunction. In-situ high-resolution XPS spectra of Ti 2p of TiO2 and TiO2@ZnIn2S4 (b), and In 3d of ZnIn2S4 and TiO2@ZnIn2S4 (c). (d) S-scheme transfer mechanism. EPR spectra of DMPO-?OH (e) and DMPO-?O2- (f) over prepared samples. Reprinted with permission from Ref. [58]. Copyright 2021, Wiley-VCH.
Fig. 17. (a) The stacking mode of PT and CdS/PT composite. (b) Photocatalytic H2 production performance. (c) AFM image of CdS/PT composite. Surface potential distributions of CdS/PT observed in darkness (d) and under light irradiation (e). (f) The line-scanning CPD from point A to B. (g) Testing theory of photo-irradiated KPFM. Reprinted with permission from Ref. [60]. Copyright 2021, Wiley-VCH.
Fig. 18. (a) FE-SEM image of TiO2/PDA sample. fs-TAS (b) and decay curves (c) of GSB signals in TiO2 and TP0.5. (d) S-scheme charge transfer pathway and time scales for photogenerated charge dynamics. Reprinted with permission from Ref. [64]. Copyright 2022, American Chemical Society.
Fig. 19. TEM (a) and HRTEM (b) images of O-ZnIn2S4/TiO2?x heterojunction. In-situ XPS spectra of high-resolution Ti 2p (c) and In 3d (d) for O-ZIS/TiO2?x. Photocatalytic H2 and BAD production rate over prepared samples with different defects or doping (e) and nanocomposites with different O-ZIS contents (f). Reprinted with permission from Ref. [67]. Copyright 2022, Elsevier.
Year | Photocatalyst | Light source | Condition | Activity | Ref. |
---|---|---|---|---|---|
2023 | Co9S8/TiO2 | 300 W Xe lamp (λ = 350‒780 nm) | 20 vol% TEOA | 3982 μmol g-1 h-1 | [ |
2023 | ZnS/TiO2 | 300 W Xe lamp | Na2S(0.35 mol L-1)/Na2SO3(0.25 mol L-1) | 5503.8 μmol g-1 h-1 | [ |
2022 | Co2P/PC-b-TiO2 | 300 W Xe lamp with a standard AM 1.5G filter | 10 vol% TEOA | 1.53 mmol g-1 h-1 | [ |
2022 | TiO2/ZnIn2S4 (TZISx) | 300 W Xe lamp | 10 vol% TEOA | 6.03 mmol g-1 h-1 | [ |
2022 | P-CuWO4/TiO2 (PCWO/T) | 300 W Xe lamp (λ = 350‒780 nm) | 20 vol% TEOA | 6169.25 μmol g-1 h-1 | [ |
2022 | TiO2/FePS3 | 350 W Xe lamp (λ > 350 nm) | 10 vol% ethanol | 99.5 μmol g-1 h-1 | [ |
2022 | BP/(Ti3C2Tx@TiO2) | Xe lamp (λ > 325 nm) | Pure water | 564.8 μmol g-1 h-1, AQE of 2.7% at 380 nm | [ |
2022 | Ti3C2 MXene@TiO2/ CuInS2 (M@T/CIS) | 300 W Xe lamp (320‒1100 nm) | 20% methanol | 356.27 μmol g-1 h-1 | [ |
2022 | TiO2‒x/TpPa-1-COF | Xe lamp (300 W, λ ≥ 420 nm) | PBS buffer solution (0.1 mol L-1, 50 mL) with sodium ascorbate (SA, 100 mg) as sacrificial and 3 wt% Pt as cocatalyst | 15.33 mmol g-1 h-1 with a TOF of 235.74 h-1 | [ |
2022 | TiO2‒x/BiOI | Xe lamp using AM 1.5G (λ = 300‒800 nm) | 15 vol% methanol | 794.28 μmol g-1 h-1 | [ |
2022 | O-ZnIn2S4/TiO2‒x | 300 W Xe lamp with a 420 nm cut-off filter | Na2S (0.35 mol L-1)/ Na2SO3 (0.25 mol L-1) | 2584.9 μmol g-1 h-1 with benzaldehyde production rate of 2880.5 μmol g-1 h-1 | [ |
2022 | Co3Se4/TiO2 | 300 W Xe lamp | 20 vol% TEOA | 6065 μmol g-1 h-1 | [ |
2022 | TiO2 nanodots/ g-C3N4 | Simulated sunlight (λ > 300 nm) | H2 and O2 evolution rate of 1318.3 and 638.7 μmol g-1/3 h | ||
2022 | PDI/TiO2 | 300 W Xe lamp | 10 vol% TEOA with 5 mg H2PtCl·6H2O as co-catalyst for 50 mg of photocatalyst | H2 and O2 release rates of 238.20 and 114.18 μmol g-1 h-1 | [ |
2022 | ZCS/TiO2 | 300 W Xe lamp with 420 nm cut-off filter | 10% TEOA | 5580 μmol g-1 h-1 with AQY of 11.5% at 420 nm | [ |
2021 | CoS@TiO2 | 150 W Xe lamp | 10 vol% of lactic acid | 1945 μmol g-1 for 10 h | [ |
2021 | g-C3N4/TiO2 | 300 W Xe lamp (420 nm cut-off filter) | 10 vol% TEOA and 3 wt% Pt | 5252.9 μmol g-1 h-1 | [ |
2020 | WO3/TiO2/rGO | 350 W Xe lamp | 20 vol% aqueous methanol solution. | 245.8 μmol g-1 h-1 | [ |
Table 1 Recently reported TiO2-based S-scheme heterojunctions for hydrogen evolution reaction.
Year | Photocatalyst | Light source | Condition | Activity | Ref. |
---|---|---|---|---|---|
2023 | Co9S8/TiO2 | 300 W Xe lamp (λ = 350‒780 nm) | 20 vol% TEOA | 3982 μmol g-1 h-1 | [ |
2023 | ZnS/TiO2 | 300 W Xe lamp | Na2S(0.35 mol L-1)/Na2SO3(0.25 mol L-1) | 5503.8 μmol g-1 h-1 | [ |
2022 | Co2P/PC-b-TiO2 | 300 W Xe lamp with a standard AM 1.5G filter | 10 vol% TEOA | 1.53 mmol g-1 h-1 | [ |
2022 | TiO2/ZnIn2S4 (TZISx) | 300 W Xe lamp | 10 vol% TEOA | 6.03 mmol g-1 h-1 | [ |
2022 | P-CuWO4/TiO2 (PCWO/T) | 300 W Xe lamp (λ = 350‒780 nm) | 20 vol% TEOA | 6169.25 μmol g-1 h-1 | [ |
2022 | TiO2/FePS3 | 350 W Xe lamp (λ > 350 nm) | 10 vol% ethanol | 99.5 μmol g-1 h-1 | [ |
2022 | BP/(Ti3C2Tx@TiO2) | Xe lamp (λ > 325 nm) | Pure water | 564.8 μmol g-1 h-1, AQE of 2.7% at 380 nm | [ |
2022 | Ti3C2 MXene@TiO2/ CuInS2 (M@T/CIS) | 300 W Xe lamp (320‒1100 nm) | 20% methanol | 356.27 μmol g-1 h-1 | [ |
2022 | TiO2‒x/TpPa-1-COF | Xe lamp (300 W, λ ≥ 420 nm) | PBS buffer solution (0.1 mol L-1, 50 mL) with sodium ascorbate (SA, 100 mg) as sacrificial and 3 wt% Pt as cocatalyst | 15.33 mmol g-1 h-1 with a TOF of 235.74 h-1 | [ |
2022 | TiO2‒x/BiOI | Xe lamp using AM 1.5G (λ = 300‒800 nm) | 15 vol% methanol | 794.28 μmol g-1 h-1 | [ |
2022 | O-ZnIn2S4/TiO2‒x | 300 W Xe lamp with a 420 nm cut-off filter | Na2S (0.35 mol L-1)/ Na2SO3 (0.25 mol L-1) | 2584.9 μmol g-1 h-1 with benzaldehyde production rate of 2880.5 μmol g-1 h-1 | [ |
2022 | Co3Se4/TiO2 | 300 W Xe lamp | 20 vol% TEOA | 6065 μmol g-1 h-1 | [ |
2022 | TiO2 nanodots/ g-C3N4 | Simulated sunlight (λ > 300 nm) | H2 and O2 evolution rate of 1318.3 and 638.7 μmol g-1/3 h | ||
2022 | PDI/TiO2 | 300 W Xe lamp | 10 vol% TEOA with 5 mg H2PtCl·6H2O as co-catalyst for 50 mg of photocatalyst | H2 and O2 release rates of 238.20 and 114.18 μmol g-1 h-1 | [ |
2022 | ZCS/TiO2 | 300 W Xe lamp with 420 nm cut-off filter | 10% TEOA | 5580 μmol g-1 h-1 with AQY of 11.5% at 420 nm | [ |
2021 | CoS@TiO2 | 150 W Xe lamp | 10 vol% of lactic acid | 1945 μmol g-1 for 10 h | [ |
2021 | g-C3N4/TiO2 | 300 W Xe lamp (420 nm cut-off filter) | 10 vol% TEOA and 3 wt% Pt | 5252.9 μmol g-1 h-1 | [ |
2020 | WO3/TiO2/rGO | 350 W Xe lamp | 20 vol% aqueous methanol solution. | 245.8 μmol g-1 h-1 | [ |
Fig. 20. (a) Diagram of WO3/TiO2 heterojunction. In-situ XPS high-resolution spectra of Ti 2p (b) and W 4f (c), surface charge densities (d), SS-SPV spectra (e), IEF intensities (f), TS-SPV spectra (g) and charge extraction efficiencies (h) of TH and TH/WP-5 samples. (i) CO production over prepared photocatalysts. Reprinted with permission from Ref. [52]. Copyright 2022, American Chemical Society.
Fig. 21. (a) Optical photograph of the floatable photocatalyst. (b) Schematic diagram of photoredox reactions in a tri-phase system. (c) Photocatalytic activity of H2O2 and FA formation over TO, BO, and TBO40 in 12 h. High-resolution in-situ XPS spectra of Ti 2p (d) and Bi 4f (e) in TO, TBO40, and TBO40. (f) Transient absorption kinetics of TO-AgNO3 and TBO40 at 395 nm. Reprinted with permission from Ref. [47]. Copyright 2022, Wiley-VCH.
Year | Photocatalyst | Light source | Condition | Activity | Ref. |
---|---|---|---|---|---|
2023 | Cu2‒xS/TiO2 | 300 W Xe lamp | H2O | CH4:11.4 μmol g-1 h-1 | [ |
2023 | CuPc/N-TiO2 | 300 W Xe lamp (420 nm cut-off filter) | H2O | CO: 5.4 μmol g-1 h-1, retained in four consecutive runs (4 h per run) | [ |
2023 | g-C3N4/TiO2/ R@Ti3C2/CoAlLa-LDH | 35W Xe lamp | H2O | CO: 185.85 µmole/g H2: 153.07 µmole/g; kept in three consecutive runs (4 h per run) | [ |
2023 | In2O3@TiO2 | 300 W Xe lamp (λ ≥ 420 nm) | H2O | CH4: 11.1 μmol g-1 h-1 and selectivity of 88.1%; remained basically stable during five cycles (4 h per cycle) | [ |
2023 | Co3O4/Ti3+-TiO2 | 350 W Xe lamp | H2O | CH4 and CO yield of 80.57 and 9.85 μmol g-1 h-1; only ~4.4% decrease in 24 h continuous recycles | [ |
2023 | TiO2@CoNi-MOF | 300 W Xe lamp with an AM 1.5G filter | H2O | CH4: 41.65 μmol g-1 h-1 | [ |
2023 | TiO2/CsPbBr3 | 300 W Xe lamp | H2O | CO: 12.5 μmol g-1 h-1 with selectivity of 90.2%; no evident decrease under the 20 h irradiation (5 h per cycle). | [ |
2023 | Co3O4-TiO2/C | 300 W Xe lamp with a 420 nm cutoff filter | [Ru(bpy)3]Cl2·6H2O (8 mg), a mixed solvent of C2H3N (3 mL), water (2 mL), and C6H15NO3 (1 mL) | CO: 33.21 mmol g-1 h-1; just a slight fluctuation in five cycles. | [ |
2022 | N-TiO2/g-C3N4 | 300W Xe lamp with an AM 1.5 optical solar simulator filter | H2O | 33.35 μmol g-1 h-1 for CO; stable after three cyclic operations without any noticeable loss of activity | [ |
2022 | CsPbBr3/TiO2 | 300W Xe lamp with an AM 1.5G filter | H2O | 145.28 μmol g-1 h-1 for CO; no obvious activity decay after the cycling test (4 consecutive cycles) | [ |
2022 | TiO2/COF | 300 W Xe lamp | 20 vol% TEOA | 11.6 μmol g-1 h-1 for CO | [ |
2022 | Fe@TiO2/BCN | 300W Xe lamp with visible light filter | H2O | CH4 and CO release rates of 24.7 and 2.4 μmol g-1 h-1 | [94] |
2022 | WO3/TiO2 | 300 W Xe lamp | H2O | CO: 4.73 μmol g-1 h-1; continuously produce CO within 16 h | [ |
2022 | Ag/AgVO3/TiO2 | UV light (8 W) | H2O | Rmethanol: 9561.3 μmol g-1 h-1 | [ |
2022 | g-C3N4/TiO2/Ti3AlC2 | 35 W HID | H2O | CO and CH4 production of 297.26 and 2103.50 μmol g-1 h-1 | [ |
2022 | g-C3N4/TiO2 | 300 W Xe lamp | H2O | CO and CH4 yield of 571.65 and 213.69 μmol g-1 m-2; no decay after consecutive running for four cycles | [ |
2022 | TiO2@Bi2MoO6 | 300 W Xe lamp | H2O | CO yield (183.97 mmol g-1 within 6 h); negligible changes in photocatalytic activity after four cycles (6 h per run) | [ |
2022 | TiO2@In2Se3@Ag3PO4 | 300 W Xe lamp | H2O | CH4, CH3OH and CO yields of 3.98, 4.32 and 8.2 μmol g-1 h-1; reduced rarely after three cycles (6 h per run) | [ |
2021 | Re-IO-TiO2‒x/SnO2 | 300 W Xe lamp (λ ≥ 380 nm) | H2O | CO: 16.59 μmol g-1 h-1; high cycling stability in five circulation | [ |
2021 | TiO2@ZnIn2S4 | 300 W Xe lamp | H2O vapor | total CO2 photoreduction conversion rates of 18.32 μmol g-1 h-1; no noticeable change in three cycles (3 h per cycle) | [ |
2021 | TiO2/MoS2/ g-C3N4 | 300 W Xe lamp | H2O | CO and CH4 release rates of 9.2 and 4.2 μmol g-1 h-1; reasonably stable in three cycles (5 h per cycle) | [ |
2021 | TiO2@PDA | 300W Xe lamp | H2O | CH3OH and CH4 yield of 0.11 and 1.5 μmol g-1 h-1 | [ |
2020 | TiO2/CsPbBr3 | 300 W Xe lamp | 30 mL of acetonitrile with 100 μL of water | CO: 9.02 μmol g-1 h-1; hardly perceptible decay of photocatalytic activity in four times cycles | [ |
Table 2 Recently reported TiO2-based S-scheme heterojunctions for CO2 photoreduction.
Year | Photocatalyst | Light source | Condition | Activity | Ref. |
---|---|---|---|---|---|
2023 | Cu2‒xS/TiO2 | 300 W Xe lamp | H2O | CH4:11.4 μmol g-1 h-1 | [ |
2023 | CuPc/N-TiO2 | 300 W Xe lamp (420 nm cut-off filter) | H2O | CO: 5.4 μmol g-1 h-1, retained in four consecutive runs (4 h per run) | [ |
2023 | g-C3N4/TiO2/ R@Ti3C2/CoAlLa-LDH | 35W Xe lamp | H2O | CO: 185.85 µmole/g H2: 153.07 µmole/g; kept in three consecutive runs (4 h per run) | [ |
2023 | In2O3@TiO2 | 300 W Xe lamp (λ ≥ 420 nm) | H2O | CH4: 11.1 μmol g-1 h-1 and selectivity of 88.1%; remained basically stable during five cycles (4 h per cycle) | [ |
2023 | Co3O4/Ti3+-TiO2 | 350 W Xe lamp | H2O | CH4 and CO yield of 80.57 and 9.85 μmol g-1 h-1; only ~4.4% decrease in 24 h continuous recycles | [ |
2023 | TiO2@CoNi-MOF | 300 W Xe lamp with an AM 1.5G filter | H2O | CH4: 41.65 μmol g-1 h-1 | [ |
2023 | TiO2/CsPbBr3 | 300 W Xe lamp | H2O | CO: 12.5 μmol g-1 h-1 with selectivity of 90.2%; no evident decrease under the 20 h irradiation (5 h per cycle). | [ |
2023 | Co3O4-TiO2/C | 300 W Xe lamp with a 420 nm cutoff filter | [Ru(bpy)3]Cl2·6H2O (8 mg), a mixed solvent of C2H3N (3 mL), water (2 mL), and C6H15NO3 (1 mL) | CO: 33.21 mmol g-1 h-1; just a slight fluctuation in five cycles. | [ |
2022 | N-TiO2/g-C3N4 | 300W Xe lamp with an AM 1.5 optical solar simulator filter | H2O | 33.35 μmol g-1 h-1 for CO; stable after three cyclic operations without any noticeable loss of activity | [ |
2022 | CsPbBr3/TiO2 | 300W Xe lamp with an AM 1.5G filter | H2O | 145.28 μmol g-1 h-1 for CO; no obvious activity decay after the cycling test (4 consecutive cycles) | [ |
2022 | TiO2/COF | 300 W Xe lamp | 20 vol% TEOA | 11.6 μmol g-1 h-1 for CO | [ |
2022 | Fe@TiO2/BCN | 300W Xe lamp with visible light filter | H2O | CH4 and CO release rates of 24.7 and 2.4 μmol g-1 h-1 | [94] |
2022 | WO3/TiO2 | 300 W Xe lamp | H2O | CO: 4.73 μmol g-1 h-1; continuously produce CO within 16 h | [ |
2022 | Ag/AgVO3/TiO2 | UV light (8 W) | H2O | Rmethanol: 9561.3 μmol g-1 h-1 | [ |
2022 | g-C3N4/TiO2/Ti3AlC2 | 35 W HID | H2O | CO and CH4 production of 297.26 and 2103.50 μmol g-1 h-1 | [ |
2022 | g-C3N4/TiO2 | 300 W Xe lamp | H2O | CO and CH4 yield of 571.65 and 213.69 μmol g-1 m-2; no decay after consecutive running for four cycles | [ |
2022 | TiO2@Bi2MoO6 | 300 W Xe lamp | H2O | CO yield (183.97 mmol g-1 within 6 h); negligible changes in photocatalytic activity after four cycles (6 h per run) | [ |
2022 | TiO2@In2Se3@Ag3PO4 | 300 W Xe lamp | H2O | CH4, CH3OH and CO yields of 3.98, 4.32 and 8.2 μmol g-1 h-1; reduced rarely after three cycles (6 h per run) | [ |
2021 | Re-IO-TiO2‒x/SnO2 | 300 W Xe lamp (λ ≥ 380 nm) | H2O | CO: 16.59 μmol g-1 h-1; high cycling stability in five circulation | [ |
2021 | TiO2@ZnIn2S4 | 300 W Xe lamp | H2O vapor | total CO2 photoreduction conversion rates of 18.32 μmol g-1 h-1; no noticeable change in three cycles (3 h per cycle) | [ |
2021 | TiO2/MoS2/ g-C3N4 | 300 W Xe lamp | H2O | CO and CH4 release rates of 9.2 and 4.2 μmol g-1 h-1; reasonably stable in three cycles (5 h per cycle) | [ |
2021 | TiO2@PDA | 300W Xe lamp | H2O | CH3OH and CH4 yield of 0.11 and 1.5 μmol g-1 h-1 | [ |
2020 | TiO2/CsPbBr3 | 300 W Xe lamp | 30 mL of acetonitrile with 100 μL of water | CO: 9.02 μmol g-1 h-1; hardly perceptible decay of photocatalytic activity in four times cycles | [ |
Time | Photocatalyst | Light source | Condition | Activity | Ref. |
---|---|---|---|---|---|
2023 | RF@TiO2 | simulated sunlight (AM 1.5G) using a 300 W Xe lamp | pure water | 66.6 mmol L-1 g-1 h-1 and solar-to-chemical conversion efficiency of 1.11% | [ |
2023 | TiO2/BTTA | 300 W Xenon arc lamp | furfuryl alcohol solution (2 mmol L-1) | 740 μmol L-1 h-1 with a furoic alcohol conversion of 96% | [ |
2023 | 3DOM SCN/T | 300 W Xe lamp | Pure water | 2128 μmol h-1 g-1 | [ |
2022 | TiO2/Bi2O3 | 300 W Xenon arc lamp | furfuryl alcohol aqueous solution (25 μL/50 mL) | 1.15 mmol L-1 h-1 with furfuryl alcohol production rate at 0.45 mmol L-1 h-1 | [ |
2022 | 2H-MoSe2/ TiO2 NRAs | A 5 W UV-LED (λ = 254 nm, 1.5 cm2) | all PEC measurements tested in a 0.2 mol L-1 Na2SO4 aqueous solution | 40 μmol L-1 h-1 | [ |
2022 | TiO2/PDA | 300 W Xenon arc lamp | 10 vol% ethanol | 2.05 μmol g-1 h-1 | [ |
2023 | TiO2/In2S3 | 300 W Xenon arc lamp | 10 vol% ethanol | 376 μmol L-1 h-1 | [ |
Table 3 Recently reported TiO2-based S-scheme heterojunction photocatalysts for H2O2 production.
Time | Photocatalyst | Light source | Condition | Activity | Ref. |
---|---|---|---|---|---|
2023 | RF@TiO2 | simulated sunlight (AM 1.5G) using a 300 W Xe lamp | pure water | 66.6 mmol L-1 g-1 h-1 and solar-to-chemical conversion efficiency of 1.11% | [ |
2023 | TiO2/BTTA | 300 W Xenon arc lamp | furfuryl alcohol solution (2 mmol L-1) | 740 μmol L-1 h-1 with a furoic alcohol conversion of 96% | [ |
2023 | 3DOM SCN/T | 300 W Xe lamp | Pure water | 2128 μmol h-1 g-1 | [ |
2022 | TiO2/Bi2O3 | 300 W Xenon arc lamp | furfuryl alcohol aqueous solution (25 μL/50 mL) | 1.15 mmol L-1 h-1 with furfuryl alcohol production rate at 0.45 mmol L-1 h-1 | [ |
2022 | 2H-MoSe2/ TiO2 NRAs | A 5 W UV-LED (λ = 254 nm, 1.5 cm2) | all PEC measurements tested in a 0.2 mol L-1 Na2SO4 aqueous solution | 40 μmol L-1 h-1 | [ |
2022 | TiO2/PDA | 300 W Xenon arc lamp | 10 vol% ethanol | 2.05 μmol g-1 h-1 | [ |
2023 | TiO2/In2S3 | 300 W Xenon arc lamp | 10 vol% ethanol | 376 μmol L-1 h-1 | [ |
Fig. 22. (a) Schematic diagram of GNT-IS-100/80/2.5-Ar500 heterostructure. Photocatalytic antibacterial (E. coil) rates (b) and degradation performance (c) of prepared photocatalysts. UV-vis DRS spectra (d) and EIS spectra (e) of prepared samples. (f) 3D charge difference density and planar averaged charge density difference of GO/g-C3N4/TiO2 heterojunction. Reprinted with permission from Ref. [121]. Copyright 2023, Elsevier.
Year | Photocatalyst | Application | Condition | Activity | Ref. |
---|---|---|---|---|---|
2023 | BaTiO3/TiO2 | piezophotocatalytic norfloxacin degradation | 300 W Xe lamp with a 1.5 G filter (100 mW cm-2) and periodic vibration provided by an ultrasonic cleaner (100 W, 40 kHz) | 91.7% complete with a rate constant of 43 × 10-3 min-1 | [ |
2023 | C-TiO2/PCN | ciprofloxacin degradation | ultrasonic cleaner (40 kHz, 200 W), 300 W Xe lamp with a 420 nm filter, 10 ppm CIP solution | 0.0517 min-1 | [ |
2023 | Bi2Sn2O7/TiO2 | photoelectrocatalytic sulfamethazine degradation | electrolyte: Na2SO4 solution (0.1 mol L-1) and 50 W LED lamp (0.13 W cm-2, XC-50W1A5-OSP, China) | removal efficiency of 90.3%; pseudo-first-order rate constant of k = 0.0189 min-1 | [ |
2023 | rGO/CeO2/TiO2 | photothermal catalytic Hg0 oxidation | space velocity in the photothermal catalytic reactor of 6800 h-1; a near-UV lamp (λ = 365 nm, UVB) | oxidation efficiency of 96% | [ |
2023 | NH2-MIL-53(Al)/ F-TiO2(B) | tetracycline degradation | 15 mg L-1 of TC; 300 W Xenon lamp (λ > 420 nm) | degradation efficiency of 96%; first-order degradation constant of 0.024 min-1 | [ |
2023 | B-TiO2/BiVO4 | tetracycline hydrochloride (TCH) degradation and H2 evolution | 20 mg L-1 TCH solution; 300 W xenon lamp (λ > 400 nm); 300 W Xe lamp, triethanolamine acting as a sacrificial reagent | TCH degradation efficiency of 89.30 % in 120 min. H2 evolution rate of 561.99 μmol g-1 h-1 | [ |
2023 | Ce-TiO2/ZnIn2S4 | photocatalytic Cr(VI) removal | XPA-7 photocatalytic reactor (Xujiang electromechanical plant); Cr(VI) solution (50 mg L-1) containing 5 mmol L-1 citric acid | [ | |
2023 | g-C3N4/TiO2/ZnIn2S4 graphene aerogel | Cr(VI) reduction, methyl orange (MO) degradation and hydrogen evolution | Cr (VI) (50 mg L-1) and MO (30 mg L-1) in aqueous solution; 300 W Xe lamp | Cr(VI) reduction rate of 98.3% in 70 min, MO degradation efficiency of 97.5% in 30 min and hydrogen evolution rate of 6531.9 μmol g-1 | [ |
2022 | In2S3/TiO2(B) | photocatalytic tetracycline degradation | 10 mg L-1 of TC aqueous solution; 300 W Xenon lamp. | removal efficiency of 97.3% | [ |
2022 | Bi/CdS/TiO2 | photocatalytic rhodamine B (RhB), methylene blue (MB) degradation and Cr(VI) reduction | 500 W Xe lamp (λ > 420 nm) | removal efficiency of 100% toward MB degradation in 2 h, 85.41% and 97.04% for RhB and Cr(VI) in 3 h | [ |
2022 | SnO2/TiO2 | Rhodamine B (RhB), methyl orange (MO) and tetracycline hydrochloride (TCH) reduction. | 300 Xe lamp (200-1000 nm); RhB solution (10 mg L-1), MO (20 mg L-1) and TCH (10 mg L-1) | removal rate of RhB, MO and TCH of 93%, 91% and 85% | [ |
2022 | g-C3N4/C-TiO2 | photocatalytic ciprofloxacin hydrochloride (CIP⋅HCl) degradation | 20 mg L-1 CIP⋅HCl solution and 300 W Xe lamp (λ > 420 nm) | degradation efficiency of 88.14% in 50 min | [ |
2022 | Ag3PO4/TiO2 | photodegradation of rhodamine B, phenol and tetracycline hydrochloride, and oxygen evolution | 300W Xe lamp | O2 production (726 µmol/g/h); 0.789 min-1 (RhB), 0.062 min-1 (phenol), and 0.193 min-1 (TC) | [ |
2022 | Bi2O3-TiO2 | photocatalytic degrade rhodamine B (RhB) and tetracycline hydrochloride (TCH), | RhB (10 mg L-1) and TCH (50 mg L-1); xenon lamp (300 W) | removal efficiency of 100% (RhB) and 92% (TCH) | [ |
2021 | SCN/TiO2 | photocatalytic Congo Red (CR) degradation | 300 W xenon lamp; CR (100 mL, 50 mg/L) | Apparent degradation rate constant of 96.2 × 10-3 min-1 | [ |
2020 | Bi2O3/TiO2 | photocatalytic phenol oxidation | phenol aqueous solution (100 mg L-1); Xe lamp | removal efficiency of 47.3% | [ |
2023 | GO/g-C3N4/TiO2 | photocatalytic antibiosis and dye methylene blue (MB) degradation | 350 W Xeon-lamp (λ ≥ 420 nm) and MB (10 mg L-1) | antibacterial rate for Escherichia coli (E. coli) of 98.18%, and MB degradation rate of 98.84% | [ |
2023 | WO3@TiO2/CS-biochar | organic dye methylene blue (MB) degradation and antibiotic tetracycline (TC) | 500 W Xe lamp (λ ≥ 400 nm); MB (15 mg L-1) and TC (10 mg L-1) | both MB and TC removal efficiency reached 95% in 2 h | [ |
2023 | B-TiO2‒x/Bi4O5I2/CDs | photocatalytic degradation of cephalexin (CEX), metronidazole (MNZ), and tetracycline (TC) | 50 W LED lamp (450-650 nm) | photodegradation rate of 718 × 10-4 min-1 for TC | [ |
2022 | TiO2/Bi2O3 | photocatalytic sterilization and water splitting | 300 W Xenon lamp (42.86 mW cm-2); E. coli with OD600 value of 1. 10 vol% TEOA and LED lamp (365 nm) for H2 generation | complete inactivation of 4.63 107 CFU mL-1 Escherichia coli cells within 6 h. H2 generation rate of 12.08 mmol h-1 g-1 | [ |
2022 | TiO2/ chlorophyll | photocatalytic sterilization | bacterial LB solution (20 μL, 1.47 × 109 cfu mL-1) | 2.94 × 107 cfu E. coli were killed by 1 cm-2 coated mask filters in 3 h | [ |
Table 4 Recently reported TiO2-based S-scheme heterojunction photocatalysts for H2O2 treatment.
Year | Photocatalyst | Application | Condition | Activity | Ref. |
---|---|---|---|---|---|
2023 | BaTiO3/TiO2 | piezophotocatalytic norfloxacin degradation | 300 W Xe lamp with a 1.5 G filter (100 mW cm-2) and periodic vibration provided by an ultrasonic cleaner (100 W, 40 kHz) | 91.7% complete with a rate constant of 43 × 10-3 min-1 | [ |
2023 | C-TiO2/PCN | ciprofloxacin degradation | ultrasonic cleaner (40 kHz, 200 W), 300 W Xe lamp with a 420 nm filter, 10 ppm CIP solution | 0.0517 min-1 | [ |
2023 | Bi2Sn2O7/TiO2 | photoelectrocatalytic sulfamethazine degradation | electrolyte: Na2SO4 solution (0.1 mol L-1) and 50 W LED lamp (0.13 W cm-2, XC-50W1A5-OSP, China) | removal efficiency of 90.3%; pseudo-first-order rate constant of k = 0.0189 min-1 | [ |
2023 | rGO/CeO2/TiO2 | photothermal catalytic Hg0 oxidation | space velocity in the photothermal catalytic reactor of 6800 h-1; a near-UV lamp (λ = 365 nm, UVB) | oxidation efficiency of 96% | [ |
2023 | NH2-MIL-53(Al)/ F-TiO2(B) | tetracycline degradation | 15 mg L-1 of TC; 300 W Xenon lamp (λ > 420 nm) | degradation efficiency of 96%; first-order degradation constant of 0.024 min-1 | [ |
2023 | B-TiO2/BiVO4 | tetracycline hydrochloride (TCH) degradation and H2 evolution | 20 mg L-1 TCH solution; 300 W xenon lamp (λ > 400 nm); 300 W Xe lamp, triethanolamine acting as a sacrificial reagent | TCH degradation efficiency of 89.30 % in 120 min. H2 evolution rate of 561.99 μmol g-1 h-1 | [ |
2023 | Ce-TiO2/ZnIn2S4 | photocatalytic Cr(VI) removal | XPA-7 photocatalytic reactor (Xujiang electromechanical plant); Cr(VI) solution (50 mg L-1) containing 5 mmol L-1 citric acid | [ | |
2023 | g-C3N4/TiO2/ZnIn2S4 graphene aerogel | Cr(VI) reduction, methyl orange (MO) degradation and hydrogen evolution | Cr (VI) (50 mg L-1) and MO (30 mg L-1) in aqueous solution; 300 W Xe lamp | Cr(VI) reduction rate of 98.3% in 70 min, MO degradation efficiency of 97.5% in 30 min and hydrogen evolution rate of 6531.9 μmol g-1 | [ |
2022 | In2S3/TiO2(B) | photocatalytic tetracycline degradation | 10 mg L-1 of TC aqueous solution; 300 W Xenon lamp. | removal efficiency of 97.3% | [ |
2022 | Bi/CdS/TiO2 | photocatalytic rhodamine B (RhB), methylene blue (MB) degradation and Cr(VI) reduction | 500 W Xe lamp (λ > 420 nm) | removal efficiency of 100% toward MB degradation in 2 h, 85.41% and 97.04% for RhB and Cr(VI) in 3 h | [ |
2022 | SnO2/TiO2 | Rhodamine B (RhB), methyl orange (MO) and tetracycline hydrochloride (TCH) reduction. | 300 Xe lamp (200-1000 nm); RhB solution (10 mg L-1), MO (20 mg L-1) and TCH (10 mg L-1) | removal rate of RhB, MO and TCH of 93%, 91% and 85% | [ |
2022 | g-C3N4/C-TiO2 | photocatalytic ciprofloxacin hydrochloride (CIP⋅HCl) degradation | 20 mg L-1 CIP⋅HCl solution and 300 W Xe lamp (λ > 420 nm) | degradation efficiency of 88.14% in 50 min | [ |
2022 | Ag3PO4/TiO2 | photodegradation of rhodamine B, phenol and tetracycline hydrochloride, and oxygen evolution | 300W Xe lamp | O2 production (726 µmol/g/h); 0.789 min-1 (RhB), 0.062 min-1 (phenol), and 0.193 min-1 (TC) | [ |
2022 | Bi2O3-TiO2 | photocatalytic degrade rhodamine B (RhB) and tetracycline hydrochloride (TCH), | RhB (10 mg L-1) and TCH (50 mg L-1); xenon lamp (300 W) | removal efficiency of 100% (RhB) and 92% (TCH) | [ |
2021 | SCN/TiO2 | photocatalytic Congo Red (CR) degradation | 300 W xenon lamp; CR (100 mL, 50 mg/L) | Apparent degradation rate constant of 96.2 × 10-3 min-1 | [ |
2020 | Bi2O3/TiO2 | photocatalytic phenol oxidation | phenol aqueous solution (100 mg L-1); Xe lamp | removal efficiency of 47.3% | [ |
2023 | GO/g-C3N4/TiO2 | photocatalytic antibiosis and dye methylene blue (MB) degradation | 350 W Xeon-lamp (λ ≥ 420 nm) and MB (10 mg L-1) | antibacterial rate for Escherichia coli (E. coli) of 98.18%, and MB degradation rate of 98.84% | [ |
2023 | WO3@TiO2/CS-biochar | organic dye methylene blue (MB) degradation and antibiotic tetracycline (TC) | 500 W Xe lamp (λ ≥ 400 nm); MB (15 mg L-1) and TC (10 mg L-1) | both MB and TC removal efficiency reached 95% in 2 h | [ |
2023 | B-TiO2‒x/Bi4O5I2/CDs | photocatalytic degradation of cephalexin (CEX), metronidazole (MNZ), and tetracycline (TC) | 50 W LED lamp (450-650 nm) | photodegradation rate of 718 × 10-4 min-1 for TC | [ |
2022 | TiO2/Bi2O3 | photocatalytic sterilization and water splitting | 300 W Xenon lamp (42.86 mW cm-2); E. coli with OD600 value of 1. 10 vol% TEOA and LED lamp (365 nm) for H2 generation | complete inactivation of 4.63 107 CFU mL-1 Escherichia coli cells within 6 h. H2 generation rate of 12.08 mmol h-1 g-1 | [ |
2022 | TiO2/ chlorophyll | photocatalytic sterilization | bacterial LB solution (20 μL, 1.47 × 109 cfu mL-1) | 2.94 × 107 cfu E. coli were killed by 1 cm-2 coated mask filters in 3 h | [ |
|
[1] | 赵彬彬, 钟威, 陈峰, 王苹, 别传彪, 余火根. 高晶化g-C3N4光催化剂: 合成、结构调控和光催化产氢[J]. 催化学报, 2023, 52(9): 127-143. |
[2] | 唐小龙, 李锋, 李方, 江燕斌, 余长林. 单原子催化剂在光催化和电催化合成过氧化氢中的研究进展[J]. 催化学报, 2023, 52(9): 79-98. |
[3] | 蔡铭洁, 刘艳萍, 董珂欣, 陈晓波, 李世杰. 漂浮型Bi2WO6/C3N4/碳布S型异质结光催化材料用于高效净化水体环境[J]. 催化学报, 2023, 52(9): 239-251. |
[4] | 孙丽娟, 于晓慧, 唐丽永, 王伟康, 刘芹芹. 构建K3PW12O40/CdS核壳S型异质结实现同步太阳能光催化分解水和选择性苯甲醇氧化反应[J]. 催化学报, 2023, 52(9): 164-175. |
[5] | 王思恺, 闵祥婷, 乔波涛, 颜宁, 张涛. 单原子催化: 追寻催化领域的“圣杯”[J]. 催化学报, 2023, 52(9): 1-13. |
[6] | 江梓聪, 程蓓, 张留洋, 张振翼, 别传彪. 氧化锌基梯型异质结光催化剂[J]. 催化学报, 2023, 52(9): 32-49. |
[7] | 刘博文, 蔡家杰, 张建军, 谭海燕, 程蓓, 许景三. MOF/CdS梯型光催化剂同时进行苯甲醇氧化和析氢反应及其机理研究[J]. 催化学报, 2023, 51(8): 204-215. |
[8] | 宋明明, 宋相海, 刘鑫, 周伟强, 霍鹏伟. ZnIn2S4/MOF-808微球结构S型异质结光催化剂的制备及其光还原CO2性能研究[J]. 催化学报, 2023, 51(8): 180-192. |
[9] | 邵秀丽, 李可, 李静萍, 程强, 王国宏, 王楷. 揭示NiS@Ta2O5纳米纤维中梯型电荷转移路径及光催化CO2转化性能[J]. 催化学报, 2023, 51(8): 193-203. |
[10] | 李世杰, 王春春, 董珂欣, 张鹏, 陈晓波, 李鑫. 新型MIL-101(Fe)/BiOBr S型异质催化剂用于高效光催化降解抗生素和还原六价铬: 光催化性能分析和光催化机理研究[J]. 催化学报, 2023, 51(8): 101-112. |
[11] | 李嘉明, 李源, 王小田, 杨直雄, 张高科. TiO2上原子分散的Fe位点促进光催化CO2还原: 增强的催化活性、 DFT计算和机制洞察[J]. 催化学报, 2023, 51(8): 145-156. |
[12] | 阎菲, 张由子, 刘思碧, 邹睿卿, Jahan B Ghasemi, 李炫华. 供体-受体型卟啉基金属有机框架实现有效电荷分离高效光催化析氢[J]. 催化学报, 2023, 51(8): 124-134. |
[13] | 孙利娟, 王伟康, 路平, 刘芹芹, 王乐乐, 唐华. 纳米高熵合金实现光催化剂肖特基势垒的调控用于光催化制氢与苯甲醇氧化耦合反应[J]. 催化学报, 2023, 51(8): 90-100. |
[14] | 刘海峰, 黄祥, 陈加藏. 电子态调控促进氢气无损耗纯化中CO的光致富集和氧化[J]. 催化学报, 2023, 51(8): 49-54. |
[15] | 乔秀清, 李晨, 王紫昭, 侯东芳, 李东升. TiO2-x@C/MoO2肖特基结: 合理设计及高效电荷分离提升光催化性能[J]. 催化学报, 2023, 51(8): 66-79. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||