催化学报 ›› 2024, Vol. 61: 71-96.DOI: 10.1016/S1872-2067(24)60043-4
张红红, 王治伟, 隗陆, 刘雨溪, 戴洪兴, 邓积光*()
收稿日期:
2024-02-25
接受日期:
2024-04-10
出版日期:
2024-06-18
发布日期:
2024-06-20
通讯作者:
* 电子信箱: 基金资助:
Honghong Zhang, Zhiwei Wang, Lu Wei, Yuxi Liu, Hongxing Dai, Jiguang Deng*()
Received:
2024-02-25
Accepted:
2024-04-10
Online:
2024-06-18
Published:
2024-06-20
Contact:
* E-mail: About author:
Jiguang Deng (College of Materials Science and Engineering, Beijing University of Technology (BJUT)) received his Ph.D. degree from BJUT (China) in 2010. Since then, he has been working at BJUT and is currently a professor. His research interests focus on low carbon environmental chemistry, environmental catalysis and photothermal catalysis technologies for the elimination or utilization of typical gaseous pollutants (VOCs, NOx, CH4, CO2, and NH3). He has published more than 260 refereed journal papers with citation over 13000 and H-index of 67.
Supported by:
摘要:
挥发性有机物(VOCs)具有毒性、刺激性、致癌性和致畸作用, 主要来源于石油化工、制药、制鞋业、电子制造和餐饮油烟等人类活动. VOCs和NOx是生成细颗粒物(PM2.5)和臭氧(O3)等二次污染物的重要前体物, 严重制约了社会的可持续发展, 并对人类健康构成了严重威胁. 因此, 治理VOCs污染对于降低环境风险至关重要. 鉴于实际工况条件复杂, 多种VOCs(烷烃、芳香烃、卤代烃、醛酮和醇酯等)共存, 它们的极性和浓度存在差异, 在催化剂上的吸附、活化和转化过程不同, 因此, 对催化剂高效消除多组分VOCs的能力提出了挑战. 目前, 在众多净化VOCs的技术中, 催化氧化法因其高效率、低能耗等优势在末端污染控制中越来越受到重视.
本文主要介绍了近十年来通过热催化或光热催化消除污染物的代表性研究工作. 首先, 系统地总结了用于热催化消除单一VOC和典型多组分VOCs (例如, 医药行业: 甲苯和丙酮; 家具涂料行业: 甲苯和异己烷等)、协同消除VOCs和NOx, 以及VOCs资源化利用(选择催化转化VOCs为高附加值产品)而设计和制备的各种具有独特形貌和结构的过渡金属氧化物纳米催化剂、贵金属颗粒纳米催化剂、贵金属单原子催化剂等, 并探讨了其氧化还原性、酸性、氧物种、载体孔结构、贵金属分散度等对催化活性和稳定性的影响机制及优化策略. 其次, 鉴于化石燃料的日益减少, 本文还概述了光热协同催化技术, 该技术结合了光催化和热催化技术, 通过太阳光的光热转换, 能够在较低的温度下高效催化消除VOCs, 并介绍了其效率和转化机制. 此外, 文中还深入分析了H2O, CO2和SO2等气体对催化稳定性的影响机制. 最后, 考虑到我国当前大气污染防治面临更为复杂的复合污染问题等挑战, 对未来发展趋势提出了展望: (1) 利用活性空间和活性位点分离策略协同催化净化VOCs和NOx, 从而实现催化氧化和还原反应的高效进行. (2) 聚焦于大气污染物和温室气体的协同处理, 探究CO2和VOCs协同转化的路径和效率, 为减污降碳和实现碳中和提供新思路. (3) 设计合成新型串联催化剂用于安全转化含CVOCs的多组分污染物, 以实现VOCs污染广谱性控制. (4) 发展先进的原位表征技术(如原位电子显微镜、同位素示踪技术、原位拉曼光谱、原位X射线光电子能谱等)以实时检测催化剂的原子结构变化、吸附VOCs分子降解的中间体变化等, 并结合理论计算确定最优反应路径, 从而指导催化剂的设计与优化. (5) 深入研究外场(例如, 光能、电能、磁能)耦合热催化降解VOCs的技术, 以期实现反应条件更温和、反应速率更高的催化过程.
综上, 本文综述了通过实验和理论计算手段揭示催化剂消除VOCs污染的性能与构效关系的研究进展, 系统地呈现了治理VOCs污染研究的基本逻辑和框架体系, 以期为后续开发高活性、高稳定性和高选择性的催化剂及其工业化应用提供借鉴.
张红红, 王治伟, 隗陆, 刘雨溪, 戴洪兴, 邓积光. 催化法治理挥发性有机物污染的研究进展[J]. 催化学报, 2024, 61: 71-96.
Honghong Zhang, Zhiwei Wang, Lu Wei, Yuxi Liu, Hongxing Dai, Jiguang Deng. Recent progress on VOC pollution control via the catalytic method[J]. Chinese Journal of Catalysis, 2024, 61: 71-96.
VOCs type | Catalyst | VOCs concentration (vol%) | Oxygen concentration (vol%) | Space velocity (mL/(g·h)) | T90% (°C) | Ea (kJ/mol) | Ref. |
---|---|---|---|---|---|---|---|
Methane | Pd2.41Pt | 2.5 | 20 | 100000 | 322 | — | [ |
0.97 wt% Pd/3DOM LaMnAl11O19 | 2.5 | 20 | 20000 | 343 | — | [ | |
Pd-GaOx/Al2O3 | 0.5 | 4 | 80000 | 372 | — | [ | |
1.81Pd2.1Pt/6.70MnOx/3DOM CoFe2O4 | 2.5 | 20 | 20000 | 372 | 59 | [ | |
0.44PtPd2.20/ZrO2 | 2.5 | 20 | 20000 | 408 | 59 | [ | |
Au-Pd-0.40CoO/3DOM Co3O4 | 2.5 | 10 | 20000 | 341 | 63 | [ | |
2.94Au0.50Pd/meso-Co3O4 | 2.5 | 20 | 20000 | 324 | 44.4 | [ | |
Co3.5Pd/3DOM CeO2 | 2.5 | 20 | 40000 | 480 | 58 | [ | |
Propane | CoCeOx-70 | 0.2 | 5 | 120000 | 310 | 97 | [ |
Pt1Co1/meso-NaxMnOy | 0.2 | 20 | 30000 | 282 | 76.0 | [ | |
Pd1/AlCo2O4-Al2O3 | 0.5 | 20 | 40000 | 358 | - | [ | |
Benzene | 6.5Au/meso-Co3O4 | 0.1 | 40 | 20000 | 189 | 55 | [ |
0.93Pd/meso-CoO | 0.1 | 20 | 40000 | 189 | — | [ | |
0.56Pt/meso-CoO | 0.1 | 40 | 80000 | 186 | — | [ | |
0.25Pt1/meso-Fe2O3 | 0.1 | 20 | 20000 | 198 | — | [ | |
0.0383Pt1/OMS-2 | 0.1 | 20 | 20000 | 189 | 41.8 | [ | |
Pd1Co1/Al2O3 | 0.1 | 20 | 40000 | 250 | 57 | [ | |
PtW/Al2O3-2 | 0.1 | 20 | 40000 | 140 | 72 | [ | |
TiO2/PdW-S1 | 0.1 | 20 | 40000 | 200 | 56 | [ | |
Toluene | 0.28Pd/S-1-H | 0.1 | 20 | 40000 | 189 | 41 | [ |
0.2 wt% Pt/TiO2 | 0.1 | 40 | 40000 | 183 | — | [ | |
1.3Pt/8.9Co3O4/3DOM Al2O3 | 0.1 | 40 | 20000 | 160 | 42.6 | [ | |
6.5Au/meso-Co3O4 | 0.1 | 40 | 20000 | 138 | 45 | [ | |
0.37Pt-0.16MnOx/meso-CeO2 | 0.1 | 20 | 40000 | 171 | — | [ | |
3.8AuPd1.92/3DOM Mn2O3 | 0.1 | 40 | 40000 | 162 | 26 | [ | |
0.96(AuPd1.92)/Co3O4 | 0.1 | 40 | 40000 | 180 | — | [ | |
1.99AuPd/3DOM Co3O4 | 0.1 | 40 | 40000 | 168 | 33 | [ | |
1,2-Dichloroethane | Ru/WO3 | 0.1 | 20 | 40000 | 340 | — | [ |
RuP/3DOM WOx | 0.1 | 20 | 40000 | 353 | — | [ | |
RuCo/HZSM-5 | 0.1 | 20 | 20000 | 281 | 36 | [ | |
RuCo/Al2O3 | 0.1 | 20 | 20000 | 391 | 104 | [ | |
10CrOx-TiO2 | 0.1 | 20 | 40000 | 284 | 35 | [ | |
Trichloroethylene | 0.98Ru/3DOM SnO2 | 0.1 | 20 | 40000 | 300 | 44 | [ |
0.93Ru2.87Pd/3DOM CeO2 | 0.1 | 20 | 20000 | 298 | 41 | [ | |
0.91Au0.51Pd/3DOM TiO2 | 0.075 | 20 | 20000 | 400 | 51.7 | [ | |
2.85AuPd1.87/3DOM CeO2 | 0.075 | 20 | 20000 | 415 | 33 | [ | |
3DOM 5.5Cr2O3-CeO2 | 0.075 | 20 | 20000 | 255 | 81 | [ |
Table 1 Catalytic performance of different sorts of catalysts for typical VOC oxidation.
VOCs type | Catalyst | VOCs concentration (vol%) | Oxygen concentration (vol%) | Space velocity (mL/(g·h)) | T90% (°C) | Ea (kJ/mol) | Ref. |
---|---|---|---|---|---|---|---|
Methane | Pd2.41Pt | 2.5 | 20 | 100000 | 322 | — | [ |
0.97 wt% Pd/3DOM LaMnAl11O19 | 2.5 | 20 | 20000 | 343 | — | [ | |
Pd-GaOx/Al2O3 | 0.5 | 4 | 80000 | 372 | — | [ | |
1.81Pd2.1Pt/6.70MnOx/3DOM CoFe2O4 | 2.5 | 20 | 20000 | 372 | 59 | [ | |
0.44PtPd2.20/ZrO2 | 2.5 | 20 | 20000 | 408 | 59 | [ | |
Au-Pd-0.40CoO/3DOM Co3O4 | 2.5 | 10 | 20000 | 341 | 63 | [ | |
2.94Au0.50Pd/meso-Co3O4 | 2.5 | 20 | 20000 | 324 | 44.4 | [ | |
Co3.5Pd/3DOM CeO2 | 2.5 | 20 | 40000 | 480 | 58 | [ | |
Propane | CoCeOx-70 | 0.2 | 5 | 120000 | 310 | 97 | [ |
Pt1Co1/meso-NaxMnOy | 0.2 | 20 | 30000 | 282 | 76.0 | [ | |
Pd1/AlCo2O4-Al2O3 | 0.5 | 20 | 40000 | 358 | - | [ | |
Benzene | 6.5Au/meso-Co3O4 | 0.1 | 40 | 20000 | 189 | 55 | [ |
0.93Pd/meso-CoO | 0.1 | 20 | 40000 | 189 | — | [ | |
0.56Pt/meso-CoO | 0.1 | 40 | 80000 | 186 | — | [ | |
0.25Pt1/meso-Fe2O3 | 0.1 | 20 | 20000 | 198 | — | [ | |
0.0383Pt1/OMS-2 | 0.1 | 20 | 20000 | 189 | 41.8 | [ | |
Pd1Co1/Al2O3 | 0.1 | 20 | 40000 | 250 | 57 | [ | |
PtW/Al2O3-2 | 0.1 | 20 | 40000 | 140 | 72 | [ | |
TiO2/PdW-S1 | 0.1 | 20 | 40000 | 200 | 56 | [ | |
Toluene | 0.28Pd/S-1-H | 0.1 | 20 | 40000 | 189 | 41 | [ |
0.2 wt% Pt/TiO2 | 0.1 | 40 | 40000 | 183 | — | [ | |
1.3Pt/8.9Co3O4/3DOM Al2O3 | 0.1 | 40 | 20000 | 160 | 42.6 | [ | |
6.5Au/meso-Co3O4 | 0.1 | 40 | 20000 | 138 | 45 | [ | |
0.37Pt-0.16MnOx/meso-CeO2 | 0.1 | 20 | 40000 | 171 | — | [ | |
3.8AuPd1.92/3DOM Mn2O3 | 0.1 | 40 | 40000 | 162 | 26 | [ | |
0.96(AuPd1.92)/Co3O4 | 0.1 | 40 | 40000 | 180 | — | [ | |
1.99AuPd/3DOM Co3O4 | 0.1 | 40 | 40000 | 168 | 33 | [ | |
1,2-Dichloroethane | Ru/WO3 | 0.1 | 20 | 40000 | 340 | — | [ |
RuP/3DOM WOx | 0.1 | 20 | 40000 | 353 | — | [ | |
RuCo/HZSM-5 | 0.1 | 20 | 20000 | 281 | 36 | [ | |
RuCo/Al2O3 | 0.1 | 20 | 20000 | 391 | 104 | [ | |
10CrOx-TiO2 | 0.1 | 20 | 40000 | 284 | 35 | [ | |
Trichloroethylene | 0.98Ru/3DOM SnO2 | 0.1 | 20 | 40000 | 300 | 44 | [ |
0.93Ru2.87Pd/3DOM CeO2 | 0.1 | 20 | 20000 | 298 | 41 | [ | |
0.91Au0.51Pd/3DOM TiO2 | 0.075 | 20 | 20000 | 400 | 51.7 | [ | |
2.85AuPd1.87/3DOM CeO2 | 0.075 | 20 | 20000 | 415 | 33 | [ | |
3DOM 5.5Cr2O3-CeO2 | 0.075 | 20 | 20000 | 255 | 81 | [ |
Fig. 1. Methane conversion varied with the temperature when the reaction temperature rose (solid) or dropped (hollow) over 3DOM Co3O4 loaded Au-Pd-3.61CoO (a), Au-Pd (b), and Pd-3.61CoO (c). Reproduced with permission from Ref. [51]. Copyright 2017, American Chemical Society.
Fig. 2. Diagram of the Pd/Al2O3 and Pd-GaOx/Al2O3 catalysts after calcination, hydrothermal aging treatments, and catalytic CH4 oxidation process. Reproduced with permission from Ref. [48]. Copyright 2018, Wiley-VCH Verlag GmbH & Co. KgaA, Weinheim.
Fig. 3. (a) Diagram for transforming PdCo nanocrystals to single atoms. (b) TEM images and EDX element mapping for PdCo nanocrystals. (c) Ac-HAADF-STEM image of Pd1/AlCo2O-Al2O3. Bright spots represent individual Pd atoms. (d) EDX element mapping of Pd1/AlCo2O4-Al2O3. Reproduced with permission from Ref. [56]. Copyright 2023, American Chemical Society.
Fig. 4. TEM (a) and HAADF-STEM (b,c) images, EDX line scan (d), and EDX elemental mappings (e) of PtW-2 NPs. (f) Benzene conversion as a function of temperature over different samples (solid line and dotted line represent the absence and presence of 100 ppm DCE, respectively). Reproduced with permission from Ref. [63]. Copyright 2020, Elsevier.
Fig. 6. SEM images of 3DOM Mn2O3 (a), 0.2Pt/3DOM Mn2O3 (b,c), 0.5Pt/3DOM Mn2O3 (d,e), 1.6 Pt/3DOM Mn2O3 (f,g), 2.3Pt/3DOM Mn2O3 (h,i), and 2.0Pt/3DOM Mn2O3-imp (j). Reproduced with permission from Ref. [106]. Copyright 2019, Elsevier.
Fig. 7. HAADF-STEM images (a-d), Pt NPs size distributions (e,f), and toluene conversion (g,h) of 2.3Pt/3DOM Mn2O3 (a,c,e,g) and 2.0Pt/3DOM Mn2O3-imp (b,d,f,h) before and after calcination treatments in air at 650 °C. Reproduced with permission from Ref. [106]. Copyright 2019, Elsevier.
Fig. 8. SEM and TEM images of MOF-74 (a), Co3O4-R (b,c), MOF-39 (d), and Co3O4-S (e,f). (g) Diagram illustrating the catalytic mechanism involved in the catalytic o-xylene oxidation over Co3O4 with different shapes. Reproduced with permission from Ref. [123]. Copyright 2021, American Chemical Society.
Fig. 9. Investigated L-H (a) and E-R (b) mechanisms of HCHO oxidation reaction on Ti/Ti3C2O2 surface. Reproduced with permission from Ref. [137]. Copyright 2020, Dalian Institute of Chemical Physics, Chinese Academy of Sciences.
Fig. 11. Possible reaction pathways of 1,2-DCE oxidation over RuP/WOx. Reproduced with permission from Ref. [73]. Copyright 2021, American Chemical Society.
Fig. 12. 1,2-DCE conversion (a) and C2H3Cl concentration (b) as a function of temperature over the WO3 and Ru/WO3 samples in the presence or absence of water vapor. Reproduced with permission from Ref. [72]. Copyright 2021, Elsevier.
Fig. 13. Toluene (a) and iso-hexane (b) conversion as a function of time over different samples. (c) Schematic diagram of catalytic stability process of toluene oxidation on Pt1/MnOx and H2-Pt1/MnOx-200. Reproduced with permission from Ref. [153]. Copyright 2021, Elsevier.
Fig. 14. Proposed reaction mechanism for toluene and iso-hexane oxidation over the Pt/M and Pt-Cu/M catalysts. Reproduced with permission from Ref. [154]. Copyright 2022, Elsevier.
Fig. 15. NO conversion and N2 selectivity (a), CB conversion (b), and CO2 selectivity (c) in the SCR/CBCO over different samples. (d) The energy and optimal structure of CB or NH3 adsorbed on the Al-CeO2, CeO2, and Ta-CeO2 structures. Blue, white, green, and gray are the colors of N, H, Cl, and C atoms, respectively. Reproduced with permission from Ref. [165]. Copyright 2021, Elsevier.
Fig. 16. (a) Schematic diagram of the preparation process of Ru/Cu-SZ-13 and the reaction route of NO and CB. (b) TEM images and particle size distribution of RuO2 nanoparticles. (c) HRTEM images of RuO2 NPs. (d) HRTEM images of CHA zeolite in Ru/Cu SZ-13. (e) Schematic diagram of the reaction mechanism of synergistic catalysis of NO and CB. Reproduced with permission from Ref. [167]. Copyright 2023, Wiley-VCH GmbH.
Fig. 17. (a) Toluene conversion and CO2 yield over different samples. (b) Toluene conversion and CO2 yield over 0.5 Pt1/Fe2O3 at varying light intensities. Reproduced with permission from Ref. [171]. Copyright 2021, Elsevier. Toluene oxidation (c) and CO2 yield (d) on 0.39Pt1/CuO-CeO2 and CuO-CeO2 catalysts in the dark or under simulated solar illumination. Reproduced with permission from Ref. [173]. Copyright 2022, American Chemical Society.
Fig. 18. (a) Effect of H2O concentration on catalytic stability over the Pt/CeO2/TiO2. (b) The structure diagram of Pt/CeO2/TiO2 and Pt/TiO2 and the reaction mechanism of photocatalytic oxidation of heptane and hexanal. Reproduced with permission from Ref. [174]. Copyright 2022, American Chemical Society.
Fig. 19. (a) Diagrammatic sketch of the 1.1 wt% AuCu0.75/Al2O3 preparation process. (b) HAADF-STEM image of AuCu NPs. (c) Product selectivity over 1.1 wt% AuCu0.75/Al2O3. Reproduced with permission from Ref. [180]. Copyright 2022, Wiley-VCH GmbH.
Fig. 20. (a) Isopropanol-selective oxidation process. (b) Energy diagrams of isopropanol-selective oxidation. (c) Adsorption energy of isopropanol, acetone, and O2, respectively. (d) Partial density of states (PDOS). Reproduced with permission from Ref. [181]. Copyright 2023, American Chemical Society.
VOCs type | Catalyst | H2O content (vol%) | Effect of H2O on catalytic activity | CO2 content (vol%) | Effect of CO2 on catalytic activity | SO2 content (ppm) | Effect of SO2 on catalytic activity | Ref. |
---|---|---|---|---|---|---|---|---|
Methane | Pd2.41Pt | 2.5 or 5 | catalytically stable | 2.5 or 5 | no significant decline | 100 | dropped sharply | [ |
Methane | 1.14Pd2.8Pt/ 3DOM LMAO | 5 | decreased slightly | 5 | without decline | 100 | decreased significantly | [ |
Methane | 0.44PtPd2.20/ ZrO2 | 10 | decreased significantly | — | — | 100 | decreased significantly | [ |
Methane | 1.93AuPd1.95/3DOM CoCr2O4 | 5 | decreased slightly | — | — | 100 | decreased slightly | [ |
n-Hexane | Co1Ni1/meso-Cr2O3 | 10 | minor negative effect | 5 | not changed distinctly | — | — | [ |
Acetylene | 0.59IrFe0.90/meso-CeO2 | 1 or 5 | no significant changes | 5 | not altered significantly | 50 | decreased significantly | [ |
Benzene | 0.25 Pt1/meso-Fe2O3 | 1 or 3 | enhancement effect | 2.5 | not change obviously | — | — | [ |
Benzene | 0.0383Pt1/OMS-2 | 1.5, 3, or 5 | decreased significantly | 5 | no obvious changes | — | — | [ |
Benzene | TiO2/PdW-S1 | 1 or 5 | almost does not affect | 5 | not change obviously | — | — | [ |
Toluene | 0.28Pd/S-1-H | 2 or 5 | decreased slightly | 5 | decreased slightly | 50 | declined sharply | [ |
Toluene | 0.2 wt% Pt/TiO2 | 2, 5, or 10 | decreased slightly | 2.5, 5, or 10 | weak negative influence | 50 | decreased rapidly | [ |
Toluene | 2.3 wt% Pt/3DOM Mn2O3 | 3 or 5 | decreased slightly | 3 | decreased slightly | 40 | decreased gradually | [ |
Toluene | 0.46PdPt2.10/V2O5-TiO2 | 5 | no significant changes | 5 | no significant decrease | 50 | decreased slightly | [ |
Toluene | 0.37Pt−0.16MnOx/meso-CeO2 | 1, 3 or 5 | no considerable changes | 5 | decreased slightly | — | — | [ |
Toluene | 1.98PtRu@3DOM CZO | 5 | decreased slightly | 10 | no significant changes | 40 | declined considerably | [ |
Methanol | 0.70Pt2.42Co/meso-MnOy | 3 | obviously inhibited | 5 | obviously inhibited | — | — | [ |
Methanol | 0.68Ag0.75Au1.14Pd/meso-Co3O4 | 3 | decreased slightly | 5 | decreased slightly | — | — | [ |
Acetone | 0.57 wt% CeO2-0.05 wt% Pt/TiO2 | 2.5, 5, 10, or 20 | obviously inhibited | 5 or 10 | obviously inhibited | 100 | decreased significantly | [ |
Trichloroethylene | 0.91Au0.51Pd/3DOM TiO2 | 3 or 5 | slight decrease | 5 or 10 | slight decrease | — | — | [ |
Trichloroethylene | 2.85AuPd1.87/3DOM CeO2 | 3 or 5 | slight decrease | 3 or 7 | slight decrease | — | — | [ |
Trichloroethylene | 0.93Ru2.87Pd/3DOM CeO2 | 3 or 5 | obviously inhibited | 5 or 10 | obviously inhibited | — | — | [ |
1,2-Dichloroethane | RuCo/HZSM-5 | 5 | slight decrease | — | — | 100 | marked decline | [ |
1,2-Dichloroethane | Ru/WO3 | 5 | enhancement effect | — | — | — | — | [ |
1,2-Dichloroethane | Ru/TiO2-HPW | 5 | enhancement effect | — | — | — | — | [ |
Toluene | 0.5Pt1/Fe2O3 | 5 or 10 | slight decrease | 5 or 10 | negligible effect | 20 | slight decrease | [ |
Heptane and hexane | Pt/CeO2/TiO2 | 5, 10, or 20 | enhancement effect | — | — | — | — | [ |
Ethyl acetate | 0.26Pd/3.2 N-TiO2 | 5 | enhancement effect | 10 | negligible effect | — | — | [ |
Table 2 Summary of the effect of H2O, CO2, and SO2 on the reaction in the different catalytic oxidation reaction.
VOCs type | Catalyst | H2O content (vol%) | Effect of H2O on catalytic activity | CO2 content (vol%) | Effect of CO2 on catalytic activity | SO2 content (ppm) | Effect of SO2 on catalytic activity | Ref. |
---|---|---|---|---|---|---|---|---|
Methane | Pd2.41Pt | 2.5 or 5 | catalytically stable | 2.5 or 5 | no significant decline | 100 | dropped sharply | [ |
Methane | 1.14Pd2.8Pt/ 3DOM LMAO | 5 | decreased slightly | 5 | without decline | 100 | decreased significantly | [ |
Methane | 0.44PtPd2.20/ ZrO2 | 10 | decreased significantly | — | — | 100 | decreased significantly | [ |
Methane | 1.93AuPd1.95/3DOM CoCr2O4 | 5 | decreased slightly | — | — | 100 | decreased slightly | [ |
n-Hexane | Co1Ni1/meso-Cr2O3 | 10 | minor negative effect | 5 | not changed distinctly | — | — | [ |
Acetylene | 0.59IrFe0.90/meso-CeO2 | 1 or 5 | no significant changes | 5 | not altered significantly | 50 | decreased significantly | [ |
Benzene | 0.25 Pt1/meso-Fe2O3 | 1 or 3 | enhancement effect | 2.5 | not change obviously | — | — | [ |
Benzene | 0.0383Pt1/OMS-2 | 1.5, 3, or 5 | decreased significantly | 5 | no obvious changes | — | — | [ |
Benzene | TiO2/PdW-S1 | 1 or 5 | almost does not affect | 5 | not change obviously | — | — | [ |
Toluene | 0.28Pd/S-1-H | 2 or 5 | decreased slightly | 5 | decreased slightly | 50 | declined sharply | [ |
Toluene | 0.2 wt% Pt/TiO2 | 2, 5, or 10 | decreased slightly | 2.5, 5, or 10 | weak negative influence | 50 | decreased rapidly | [ |
Toluene | 2.3 wt% Pt/3DOM Mn2O3 | 3 or 5 | decreased slightly | 3 | decreased slightly | 40 | decreased gradually | [ |
Toluene | 0.46PdPt2.10/V2O5-TiO2 | 5 | no significant changes | 5 | no significant decrease | 50 | decreased slightly | [ |
Toluene | 0.37Pt−0.16MnOx/meso-CeO2 | 1, 3 or 5 | no considerable changes | 5 | decreased slightly | — | — | [ |
Toluene | 1.98PtRu@3DOM CZO | 5 | decreased slightly | 10 | no significant changes | 40 | declined considerably | [ |
Methanol | 0.70Pt2.42Co/meso-MnOy | 3 | obviously inhibited | 5 | obviously inhibited | — | — | [ |
Methanol | 0.68Ag0.75Au1.14Pd/meso-Co3O4 | 3 | decreased slightly | 5 | decreased slightly | — | — | [ |
Acetone | 0.57 wt% CeO2-0.05 wt% Pt/TiO2 | 2.5, 5, 10, or 20 | obviously inhibited | 5 or 10 | obviously inhibited | 100 | decreased significantly | [ |
Trichloroethylene | 0.91Au0.51Pd/3DOM TiO2 | 3 or 5 | slight decrease | 5 or 10 | slight decrease | — | — | [ |
Trichloroethylene | 2.85AuPd1.87/3DOM CeO2 | 3 or 5 | slight decrease | 3 or 7 | slight decrease | — | — | [ |
Trichloroethylene | 0.93Ru2.87Pd/3DOM CeO2 | 3 or 5 | obviously inhibited | 5 or 10 | obviously inhibited | — | — | [ |
1,2-Dichloroethane | RuCo/HZSM-5 | 5 | slight decrease | — | — | 100 | marked decline | [ |
1,2-Dichloroethane | Ru/WO3 | 5 | enhancement effect | — | — | — | — | [ |
1,2-Dichloroethane | Ru/TiO2-HPW | 5 | enhancement effect | — | — | — | — | [ |
Toluene | 0.5Pt1/Fe2O3 | 5 or 10 | slight decrease | 5 or 10 | negligible effect | 20 | slight decrease | [ |
Heptane and hexane | Pt/CeO2/TiO2 | 5, 10, or 20 | enhancement effect | — | — | — | — | [ |
Ethyl acetate | 0.26Pd/3.2 N-TiO2 | 5 | enhancement effect | 10 | negligible effect | — | — | [ |
Fig. 21. (a) Schematic diagram of the preparation process of W1/PdO NPs. Effect of H2O content on CH4 conversion and CO2 selectivity over PdW1/Al2O3 (b) and Pd/Al2O3 (c). Reproduced with permission from Ref. [184]. Copyright 2022, Wiley-VCH GmbH.
Fig. 22. (A) CH4 conversion as a function of reaction time over different samples in the absence and presence of H2O. Reproduced with permission from Ref. [51]. Copyright 2017, American Chemical Society. (B) Propane conversion as a function of on-stream reaction time in the presence or absence of CO2 and H2O over PtNPCoNP/meso-NaxMnOy (c), Co1/meso-NaxMnOy (d), Pt1/meso-NaxMnOy (e), and Pt1Co1/meso-NaxMnOy (f). Reproduced with permission from Ref. [55]. Copyright 2022, American Chemical Society. (C) Benzene conversion as a function of on-stream reaction time in the presence or absence of SO2 in Pd/Al2O3 and Pd1Co1/Al2O3. Reproduced with permission from Ref. [62]. Copyright 2020, Elsevier.
Fig. 23. The mechanism of methanol oxidation on Au1Pt1/meso-Fe2O3 and PtNP/meso-Fe2O3 catalysts in the presence of SO2. Reproduced with permission from Ref. [132]. Copyright 2023, Elsevier.
|
[1] | 杨冲亚, 王玮珏, 卓红英, 沈铮, 张天雨, 杨小峰, 黄延强. 晶相设计钌基纳米催化剂提高CO2甲烷化活性[J]. 催化学报, 2024, 61(6): 226-236. |
[2] | Yongbiao Hua, Kumar Vikrant, Ki-Hyun Kim, Philippe M. Heynderickx, Danil W. Boukhvalov. 碱改性铜锰尖晶石室温催化氧化空气中甲醛[J]. 催化学报, 2024, 60(5): 337-350. |
[3] | 聂翼飞, 颜红萍, 鹿苏微, 张宏伟, 齐婷婷, 梁诗景, 江莉龙. 理论指导构建Cu-O-Ti-Ov活性位点及其高效电催化还原硝酸根研究[J]. 催化学报, 2024, 59(4): 293-302. |
[4] | 刘玉庭, 聂贝黎, 李宁, 刘慧芳, 王峰. 氯自由基介导的光催化芳基醚C(sp3)-H氧化生成酯[J]. 催化学报, 2024, 58(3): 123-128. |
[5] | 齐宴宾, 朱以华, 江宏亮, 李春忠. 通过NiMo氧化物-CoMo氧化物混合物衍生催化剂中的界面相互作用促进甲醇到甲酸盐的电催化氧化[J]. 催化学报, 2024, 56(1): 139-149. |
[6] | 王毅, 王硕, 付云凡, 桑佳琪, 臧一鹏, 魏鹏飞, 李合肥, 汪国雄, 包信和. CuPc/FeNC双组分催化剂协同催化硝酸盐转化为氨[J]. 催化学报, 2024, 56(1): 104-113. |
[7] | 刘敬祥, 张超, Ferdi Karadas, 熊宇杰. 地外光催化CO2转化[J]. 催化学报, 2023, 50(7): 1-5. |
[8] | 米金星, 陈孝平, 丁亚军, 张良柱, 马军, 康辉, 吴籼虹, 刘岳峰, 陈建军, 吴忠帅. 活化高熵氧化物中部分金属位点显著增强热催化和电催化[J]. 催化学报, 2023, 48(5): 235-246. |
[9] | 张锋伟, 郭河芳, 刘萌萌, 赵阳, 洪峰, 李静静, 董正平, 乔波涛. 表面应力介导的碳基Pt纳米催化剂用于硝基芳烃的高选择性加氢[J]. 催化学报, 2023, 48(5): 195-204. |
[10] | 刘华, 康磊磊, 王华, 蒋齐可, 刘晓艳, 王爱琴. 硫酸化氧化锆负载的Ru单原子催化甲烷直接转化制甲醇[J]. 催化学报, 2023, 46(3): 64-71. |
[11] | 王洪芳, 徐雷涛, 吴景程, 周鹏, 陶沙沙, 逯宇轩, 吴贤文, 王双印, 邹雨芹. 通过TEMPO增强脱氢和OH吸附促进中性电解质中5-羟甲基糠醛的电催化氧化[J]. 催化学报, 2023, 46(3): 148-156. |
[12] | 吴沛文, 邓畅, 刘锋, 朱昊男, 陈琳琳, 刘若禹, 朱文帅, 徐春明. 磁性可循环高熵金属氧化物催化剂用于活化氧气催化氧化脱硫[J]. 催化学报, 2023, 54(11): 238-249. |
[13] | 顾宇, 王磊, 徐柏庆, 施慧. 金属-水界面催化的分子机制: 加氢与氧化反应[J]. 催化学报, 2023, 54(11): 1-55. |
[14] | 王宇, Jaime Gallego, 汪炜, Phillip Timmer, 丁敏, Alexander Spriewald Luciano, Tim Weber, Lorena Glatthaar, 郭杨龙, Bernd M. Smarsly, Herbert Over. 析出型LaFe0.9Ru0.1O3钙钛矿催化剂在丙烷催化氧化反应中的自活化现象[J]. 催化学报, 2023, 54(11): 250-264. |
[15] | 逯宇轩, 杨柳, 姜一民, 原甑然, 王双印, 邹雨芹. 局域静电环境工程用于增强电催化生物质转化过程中羟基活性[J]. 催化学报, 2023, 53(10): 153-160. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||