催化学报 ›› 2025, Vol. 72: 230-242.DOI: 10.1016/S1872-2067(24)60286-X

• 论文 • 上一篇    下一篇

超高过电位诱导NiS2深度重构显著提高HER性能

冯超a,b,1, 邵佳新a,1, 吴汉洋a, 杨恒攀a, 蔚佳莹d,*(), 胡琪a,*(), 何传新a,*()   

  1. a深圳大学化学与环境工程学院, 广东深圳 518060, 中国
    b石河子大学化学化工学院, 化工绿色加工国家重点实验室孵化基地, 新疆石河子 832003, 中国
    c格但斯克工业大学化学科学学院, 化学工程与技术系, 80-233, 波兰
    d深圳科技大学集成电路与光电芯片学院, 广东深圳 518118, 中国
  • 收稿日期:2024-12-09 接受日期:2025-02-08 出版日期:2025-05-18 发布日期:2025-05-20
  • 通讯作者: *电子信箱: yujiaying@sztu.edu.cn (蔚佳莹),hq2016@szu.edu.cn (胡琪),hecx@szu.edu.cn (何传新).
  • 作者简介:1共同第一作者.
  • 基金资助:
    国家自然科学基金(U21A20312);国家自然科学基金(22379100);国家自然科学基金(22309115);深圳市科技计划经费(20231121200418001);广东省基础与应用基础研究基金(2022B1515120084);广东省教育厅重点项目经费(2023ZDZX3020);新疆维吾尔自治区天池英才计划(青年博士项目)(2025)

Ultra-high overpotential induces NiS2 deep reconstruction to significantly improve HER performance

Chao Fenga,b,1, Jiaxin Shaoa,1, Hanyang Wua, Afaq Hassanc, Hengpan Yanga, Jiaying Yud,*(), Qi Hua,*(), Chuanxin Hea,*()   

  1. aCollege of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, Guangdong, China
    bSchool of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, Xinjiang, China
    cDepartment of Chemical Engineering and Technology, Faculty of Chemical Sciences, Gdańsk University of Technology, Gdansk 80-233, Poland
    dCollege of Integrated Circuits and Optoelectronic Chips, Shenzhen Technology University, Shenzhen 518118, Guangdong, China
  • Received:2024-12-09 Accepted:2025-02-08 Online:2025-05-18 Published:2025-05-20
  • Contact: *E-mail: yujiaying@sztu.edu.cn (J. Yu), hq2016@szu.edu.cn (Q. Hu), hecx@szu.edu.cn (C. He).
  • About author:1Contributed equally to this work.
  • Supported by:
    National Natural Science Foundation of China(U21A20312);National Natural Science Foundation of China(22379100);National Natural Science Foundation of China(22309115);Shenzhen Science and Technology Program(20231121200418001);Guangdong Basic and Applied Basic Research Foundation(2022B1515120084);Key Project of Department of Education of Guangdong Province(2023ZDZX3020);Tianchi Talent Program (Young Doctoral Program) of Xinjiang Uygur Autonomous Region(2025)

摘要:

过渡金属硫化物(TMS)因具有高活性、电子结构的可调性大以及合成方法简单等优势, 广泛应用于碱性电解水制氢过程. 然而, 相对于Pt基电催化剂的高析氢反应(HER)活性, TMS在性能方面还有巨大的提升空间. 本文旨在通过简单且通用的策略来改性TMS以大幅提高其碱性电解水制氢性能. 目前的一些研究工作采用杂原子掺杂工程、异质结构工程、缺陷工程和非晶态工程等措施来提升TMS的碱性HER性能. 然而, 上述措施的实现都需要对TMS电催化剂进行繁琐而精细的设计与制备. 复杂的制备工艺所带来的高成本和不稳定性限制了其进一步的应用. 在此, 我们提出并验证了一种通过超高过电位诱导TMS深度重构进而显著提升其HER性能的普适性方法.

此方法对于研究规模化电解水制氢工艺中高电压和大电流密度下TMS的重构过程及其构效关系具有一定的指导作用.

本文选取NiS2作为模型电催化剂, 开发了一种通过超高过电位诱导其深度重构进而显著提高其HER性能的简单而通用的策略. 研究了从常规工作电位到超高过电位的作用下所诱导NiS2发生的重构现象对其电催化析氢性能的影响规律. 实验结果表明, 超高过电位诱导重构后, NiS2@CC-900 (900表示过电位为900 mV)样品的HER性能得到了最显著的增强. 与161 mV (对应于10 mA cm-2)的初始过电位相比, 重构样品的过电位仅为94 mV, 降低了67 mV (42%). 在长达25小时的稳定性测试中, 对应的电流密度仅衰减2%, 证实了深度重构后的样品具有优异的循环稳定性. 原位和非原位表征结果表明, NiS2在重构过程中随着过电位的变化逐渐重构为Ni/Ni3S2异质界面结构, 异质界面的协同作用更有利于提高其HER性能, 与理论计算结果一致. 密度泛函理论计算结果表明, 深度重构产物(Ni/Ni3S2)能更好地促进电子转移过程, 调节d带中心的位置, 从而优化HER过程, 还证实了Ni/Ni3S2异质界面结构能够更好的促进H*的吸附/解吸过程并具有更快的HER动力学. 此外, 上述的简单策略具有良好的普适性, 也同样适用于CoS2和FeS2. 采用同样的方式, 分别对CoS2@CC和FeS2@CC进行了超高过电位处理和HER性能测试. 结果表明, 经过900 mV过电位处理后的CoS2@CC-900和FeS2@CC-900样品在10 mA cm-2的电流密度下的对应过电势仅为154和190 mV, 与初始样品CoS2@CC (213 mV)和FeS2@CC (239 mV)相比, 分别降低了59和49 mV.

综上, 本研究不仅为诱导TMS深度重构显著提高其HER性能提供了一种极其简单且通用的策略, 而且为探索TMS在超高过电位下的动态重构机制和构建高效的非贵金属基电催化剂提供了一定的方法指导.

关键词: 硫化镍, 超高过电位诱导, 深度重构, 协同效应, 析氢反应

Abstract:

It is well known that transition metal sulfides (TMS) (i.e., NiS2) undergo electrochemical reconstructions to generate highly active Ni3S2 during the process of hydrogen evolution reaction (HER) under overpotentials of < 500 mV. However, at higher overpotentials, Ni3S2 can theoretically be further restructured into Ni and thus form Ni/Ni3S2 heterogeneous interface structures, which may provide opportunities to further enhance HER activity of NiS2. Here, we selected NiS2 as a model electrocatalyst and investigated the influence of the reconstruction results induced from regular to ultrahigh overpotentials on its electrocatalytic hydrogen precipitation performance. The experimental results showed that the most significant enhancement of hydrogen precipitation performance was obtained for the NiS2@CC-900 (900 means 900 mV overpotential) sample after the ultra-high overpotential induced reconstruction. Compared with the initial overpotential of 161 mV (10 mA cm-2), the overpotential of the reconstructed sample reduced by 67 mV (42%). The characterization results showed that an ultra-high overpotential of 900 mV induced deep reconstruction of NiS2, formed highly reactive Ni/Ni3S2 heterogeneous interfaces, which is more conducive to improved HER performance and match well with theoretical calculations results. We demonstrated ultrahigh overpotential was an effective strategy to induce NiS2 deeply reconstruction and significantly improve its HER performance, and this strategy was also applicable to CoS2 and FeS2. This study provides an extremely simple and universal pathway for the reasonable construction of efficient electrocatalysts by induced TMS deeply reconstruction.

Key words: Nickel sulfide, Ultra-high overpotential induces, Deep reconstruction, Synergistic effect, Hydrogen evolution reaction