催化学报 ›› 2025, Vol. 78: 156-169.DOI: 10.1016/S1872-2067(25)64795-4

• 论文 • 上一篇    下一篇

膦-硫共配位微环境调控增强Rh单核络合物烯烃多相氢甲酰化活性

冯四全a,1, 李存耀a,1, 周宇轩b,1, 宋宪根a,*(), 姜淼a, 代胡飞b, 宋尚晟a, 樊本汉a, 蔡雨桐a,c, 李彬a, 袁乔a,c, 李星局a, 祝雷a, 张悦a, 陈维苗a, 刘涛a, 严丽a,*(), 龚学庆d,*(), 丁云杰a,e,*()   

  1. a中国科学院大连化学物理研究所, 辽宁大连 116023
    b华东理工大学化学与分子工程学院, 上海 200237
    c中国科学院大学, 北京 100049
    d上海交通大学化学化工学院, 上海 200240
    e中国科学院大连化学物理研究所, 催化基础国家重点实验室, 辽宁大连 116023
  • 收稿日期:2025-05-20 接受日期:2025-07-03 出版日期:2025-11-18 发布日期:2025-10-14
  • 通讯作者: *电子信箱: xiangensong@dicp.ac.cn (宋宪根), yanli@dicp.ac.cn (严丽), xqgong@sjtu.edu.cn (龚学庆), dyj@dicp.ac.cn (丁云杰).
  • 作者简介:1共同第一作者.
  • 基金资助:
    国家重点研发计划(2023YFA1506604);国家重点研发计划(2023YFA1507500);国家自然科学基金(22002156);国家自然科学基金(22002152);国家自然科学基金(22108275);国家自然科学基金(22372161);中科院青促会基金(2022179);中科院青促会基金(2023190);中科院青促会基金(2021181);辽宁省科技攻坚联合项目(3E1731683594447);中国科学院稳定支持基础研究项目(YSBR-022);辽宁省优青项目(2024JH3/10200014);大连市优青项目(2024RY016);大连化物所创新基金(DICP I202117);大连化物所创新基金(DICP I202455)

Regulating microenvironment of heterogeneous Rh mononuclear complex via sulfur-phosphine co-coordination to enhance the performance of hydroformylation of olefins

Siquan Fenga,1, Cunyao Lia,1, Yuxuan Zhoub,1, Xiangen Songa,*(), Miao Jianga, HuFei Daib, Shangsheng Songa, Benhan Fana, Yutong Caia,c, Bin Lia, Qiao Yuana,c, Xingju Lia, Lei Zhua, Yue Zhanga, Weimiao Chena, Tao Liua, Li Yana,*(), Xueqing Gongd,*(), Yunjie Dinga,e,*()   

  1. aDalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China
    bSchool of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
    cUniversity of Chinese Academy of Sciences, Beijing 100049, China
    dSchool of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
    eState Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China
  • Received:2025-05-20 Accepted:2025-07-03 Online:2025-11-18 Published:2025-10-14
  • Contact: *E-mail: xiangensong@dicp.ac.cn (X. Song), yanli@dicp.ac.cn (L. Yan), xqgong@sjtu.edu.cn (X. Gong), dyj@dicp.ac.cn (Y. Ding).
  • About author:1Contributed equally to this work.
  • Supported by:
    National Key R&D Program of China(2023YFA1506604);National Key R&D Program of China(2023YFA1507500);National Natural Science Foundation of China(22002156);National Natural Science Foundation of China(22002152);National Natural Science Foundation of China(22108275);National Natural Science Foundation of China(22372161);Youth Innovation Promotion Association of the Chinese Academy of Sciences(2022179);Youth Innovation Promotion Association of the Chinese Academy of Sciences(2023190);Youth Innovation Promotion Association of the Chinese Academy of Sciences(2021181);Liaoning Provincial Science and Technology Program Joint Program (Technology Tackling Program Project(3E1731683594447);CAS Project for Young Scientists in Basic Research(YSBR-022);Natural Science Foundation of Liaoning Province-Outstanding Youth Science Foundation(2024JH3/10200014);Dalian Outstanding Young Scientific and Technological Talents(2024RY016);and the Foundation of DICP I202117 and DICP I202455.

摘要:

烯烃氢甲酰化是工业上生产重要醛类化学品的关键反应, 具有巨大的工业价值. 铑(Rh)基催化剂因其卓越的催化性能占据核心地位. 然而, 均相Rh催化剂面临催化剂与产物分离困难的问题, 负载型多相催化剂在活性与选择性上常逊色于均相体系, 且其活性中心易受杂质影响而失活. 其中, 硫被广泛认为是贵金属催化剂的强力毒物, 能够显著抑制催化活性与稳定性. 发展兼具高活性、高化学和区域选择性、优异稳定性且能抵抗硫中毒的多相Rh催化剂是本领域的重要挑战. 本文聚焦探索膦与硫的协同配位效应, 旨在通过精确调控单Rh活性位点的配位微环境, 颠覆传统硫中毒认知, 为解决上述挑战提供创新策略.

本文突破性地提出膦-硫(P-S)协同配位调控策略, 设计合成以膦、硫共功能化多孔有机聚合物(POPs-PPh3&S)为载体的单原子Rh催化剂(Rh1/POPs-PPh3&S). 通过精准调控载体中硫与PPh3的摩尔比例(S/PPh3), 系统优化了Rh位点的配位微环境, 重点研究了Rh配位微环境对丙烯多相氢甲酰化性能的影响. 结果显示, 当S/PPh3比例为1:9时, 催化剂性能达到最优. 在丙烯多相氢甲酰化反应中, 转化率达到85.4%, TOF值高达1388 h-1, 产品选择性98.3%, 是仅含膦配位催化剂Rh1/POPs-PPh3 (TOF 925 h-1)的1.5倍, 正异比从4.6提高到5.6; 同时显著优于仅含硫配位的Rh1/POPs-S (TOF 598 h-1, 正异比0.8). 该协同增强效应在高碳数烯烃(1-戊烯、1-己烯、1-庚烯和1-辛烯)的多相氢甲酰化反应中也得到了明确验证. 高温实验结果证实, 适量硫的加入还可以显著降低烯烃异构化和加氢副反应的选择性. 长周期固定床反应(丙烯底物, 稳定运行230 h, 正异比达到9.0左右)证实Rh1/POPs-PPh3&S催化剂优异的稳定性: 醛选择性始终维持在约96%的高水平, 且没有失活现象. 综合表征(球差电镜、扩展X射线吸收精细结构、X射线光电子能谱和CO-程序升温脱附)证明了Rh以单原子形式分散, 且形成了独特的P-S协同配位结构. 原位漫反射红外光谱及原位程序升温表面反应-质谱详细揭示了反应物(CO/H2/丙烯)在催化剂表面的吸附行为、反应中间体演变及产物脱附路径, 阐明了催化循环过程. 密度泛函理论计算深入揭示了P-S协同配位的构效关系与活性提升的微观机制. 膦配位显著提高了Rh中心的电子密度, 而S配位则适度降低了Rh的电子密度, 呈现出了P→Rh→S电荷传输的新机制. P-S协同配位的关键作用在于精细地优化了铑活性中心的最佳电荷状态(即电荷密度). 这种优化显著降低了氢甲酰化决速步——即烯烃插入Rh-H键形成烷基铑中间体这一基元步骤的过渡态能垒, 从而解释了催化活性大幅提升的根本原因.

综上, 本文提出的膦与硫的协同配位打破了烯烃氢甲酰化金属催化剂硫中毒的传统固有认知, 实现了“硫中毒”到“硫促进”的功能转化, 显著提升了Rh单原子催化剂的氢甲酰化活性与稳定性. 本工作不仅为设计高活性、抗硫干扰多相氢甲酰化催化剂提供新范例, 更重要的是首次在原子尺度揭示了硫在特定配位微环境下(协同膦配体)角色由“中毒”到“促进”的根本性转变, 颠覆了贵金属催化剂硫中毒的固有负面认知, 深化了对单原子催化中配位微环境作用机制的理解, 为未来精准设计面向复杂反应环境和实际应用的先进单原子催化剂提供了重要的理论依据和新思路.

关键词: 烯烃多相氢甲酰化, Rh单核络合物催化剂, 硫-膦共配位, 协同作用, 硫中毒, 硫促进, 配位微环境调控

Abstract:

Sulfur was typically regarded as a poison to precious metal complex catalysts in hydroformylation of olefins. However, the combination of sulfur and phosphine may present an intriguing interaction with heterogeneous mononuclear complex due to the difference of their electronegativities, and coordination capabilities. Herein, we report a novel sulfur-phosphine co-coordinated heterogeneous Rh mononuclear complex catalyst (Rh₁/POPs-PPh3&S), which exhibits an unexpected 1.5-2.0 times catalytic activity for hydroformylation of olefins (C3=, C5=-C8=), in comparison with the solely phosphine-coordinated Rh mononuclear complex catalyst (Rh1/POPs-PPh3). In contrast, sulfur coordination alone leads to severe sulfur poisoning with significantly inhibited catalytic performance. Experimental and theoretical analyses reveal that phosphine coordination promotes catalytic activity via its strong electron-donating ability, while sulfur occupies a coordination site and reduces the electronic density of Rh ions. The synergistical coordination of sulfur and phosphine optimizes the electronic density of active Rh ions and decreases the energy barrier of the rate-determining step of olefin insertion, thus enhancing the hydroformylation activity, regioselectivity and stability of Rh₁/POPs-PPh3&S.

Key words: Heterogeneous hydroformylation, Rh mononuclear complex, Sulfur-Phosphine co-coordination, Synergistic effect, Sulfur poison, Sulfur promotion, Regulation of microenvironment