催化学报 ›› 2025, Vol. 75: 115-124.DOI: 10.1016/S1872-2067(25)64752-8

• 论文 • 上一篇    下一篇

探索内部界面键合与多金属协同作用以促进光电化学水分解

眭琦a, 李辉a, 陶晨a,d, 李冉a, 高玉洁a, 杨婷婷a, 郑鸿帅a, 夏立新a,b,*(), 李斐c,*(), 姜毅a,*()   

  1. a辽宁大学化学院, 辽宁沈阳 110036
    b营口理工学院, 辽宁营口 115100
    c大连理工大学精细化工国家重点实验室, 辽宁大连 116024
    d天津大学环境科学与工程学院, 天津 300072
  • 收稿日期:2025-03-10 接受日期:2025-05-06 出版日期:2025-08-18 发布日期:2025-07-22
  • 通讯作者: *电子信箱: lixinxia@lnu.edu.cn (夏立新), lifei@dlut.edu.cn (李斐), jiangyi@lnu.edu.cn (姜毅).
  • 基金资助:
    国家重点研发计划(2022YFA0911900);国家自然科学基金(22179056);辽宁省教育厅重点项目(JYTZD2023001);辽宁省兴辽英才计划(XLYC2002097);辽宁省兴辽英才计划(XLYC1807210);辽宁省省属高校基本科研业务费(LJ232410140033)

Exploring internal interface bonding and multi-metal synergy for boosting photoelectrochemical water splitting

Sui Qia, Li Huia, Tao Chena,d, Li Rana, Gao Yujiea, Yang Tingtinga, Zheng Hongshuaia, Xia Lixina,b,*(), Li Feic,*(), Jiang Yia,*()   

  1. aCollege of Chemistry, Liaoning University, Shenyang 110036, Liaoning, China
    bYingkou Institute of Technology, Yingkou 115100, Liaoning, China
    cState Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, Liaoning, China
    dSchool of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
  • Received:2025-03-10 Accepted:2025-05-06 Online:2025-08-18 Published:2025-07-22
  • Contact: *E-mail: lixinxia@lnu.edu.cn (L. Xia), lifei@dlut.edu.cn (F. Li), jiangyi@lnu.edu.cn (Y. Jiang).
  • Supported by:
    National Key R&D Program of China(2022YFA0911900);National Natural Science Foundation of China(22179056);Key Projects of Liaoning Provincial Education Department(JYTZD2023001);Liaoning Revitalization Talents Program(XLYC2002097);Liaoning Revitalization Talents Program(XLYC1807210);Fundamental Research Funds for Public Universities in Liaoning(LJ232410140033)

摘要:

光电化学(PEC)水分解技术作为一种清洁能源转化的重要途径, 面临的核心挑战在于光阳极材料体系的精确设计. 近年来, 在钒酸铋(BVO)光阳极表面原位生长析氧助催化剂(OECs)取得了显著进展, 但催化剂中各个组分在PEC水氧化过程中的作用仍需要深入研究. 界面结构对光电极的性能至关重要. 理想的光阳极与助催化剂之间的界面能够有效促进光生空穴从半导体转移至助催化剂表面, 并驱动助催化剂的再生, 从而实现高效且稳定的PEC水氧化反应. 因此, 优化光阳极与助催化剂界面的设计并探讨多组分间的协同作用, 对于提升PEC水氧化过程的效率和稳定性是至关重要的.

本文创新性地采用简单的一步水热法将F元素同时引入助催化剂及其与BVO的界面, 构筑了BVO/CoNi0.18Mn0.12(OH)xF复合光阳极. 其中, 氟元素不仅作为负离子存在于助催化剂的表面层, 更关键的是在BVO与助催化剂的界面处形成了独特的V-F键(请确认修改后是否发生歧义). 为阐明界面V-F键的作用机制, 创造性地在界面引入Al2O3隔绝层, 结果表明V-F键对于提升电荷转移效率和驱动水分解的稳定性至关重要. 密度泛函理论计算进一步揭示, V-F键的引入有效调节了BVO与助催化剂之间的电荷转移. 具体而言, 其存在增强了Co2+活性位点在催化过程中的稳定性. 界面V-F-Co结构充当了一组“传动齿轮”, 在光生空穴的迁移与助催化剂的再生之间建立了良好的动态平衡, 从而有效抑制了助催化剂的光腐蚀, 提升了光阳极的PEC性能. 此外, 本文还详细探讨了助催化剂层中Co, Ni和Mn各组分的作用. 通过大量多角度的对照实验, 确定钴离子作为活性催化中心直接参与水氧化反应; 镍离子充当“稳定剂”与钴离子形成齿轮效应, 帮助钴稳定的进行水氧化反应; 锰离子则增加了活性位点的数量. 得益于界面键合和多金属协同作用, 优化的BVO/CoNi0.18Mn0.12(OH)xF复合光阳极在AM 1.5G光照及1.23 V vs. RHE下, 光电流密度高达6.05 mA cm-2(约为纯BVO的4倍), 并在长达10 h的光电解测试中展现出优异的稳定性(光电流衰减可忽略).

综上, 本文提出了一种“内部调节”策略, 制备了含有V-F键的氟化改性三金属BVO光阳极, 同时实现光阳极的高效活性和优异的稳定性. 它为界面设计和协同作用探讨提供了新的研究思路, 并且强调了调节光生空穴迁移和催化剂再生的重要意义, 为开发高效、稳定的PEC光阳极提供了新的见解.

关键词: 钒酸铋, 光电化学水氧化, 光阳极, 界面结合, 多金属协同作用

Abstract:

In situ growth of co-catalysts on BiVO4 (BVO) to enhance photoelectrochemical (PEC) water splitting performance has been extensively reported. However, the understanding of the synergistic effects among various elements, especially at the interface between the semiconductor and cocatalyst, has received insufficient attention. In this study, we report a Co, Ni and Mn trimetallic fluoride-modified BVO photoanode featuring a unique interfacial chemical bond (V-F). Under AM 1.5 G illumination, an exciting photocurrent density of 6.05 mA cm-2 was achieved at 1.23 V vs. RHE by the integrated BVO/CoNi0.18Mn0.12(OH)xF photoanode and over 98% of the initial photocurrent was maintained after 10 h of photoelectrolysis. Control experiments and theoretical calculations demonstrate that the V-F interfacial bond stabilizes the Co2+ active sites. It serves as a transmission gear, interlinking the migration of interfacial charge and the regeneration of cocatalyst, endowing the photoanode with significant activity and stability. Furthermore, we have systematically elucidated the role of the individual Co, Ni, and Mn components in the synergistic cocatalyst layer. The interfacial modification provides novel insights into developing advanced photoanodes towards PEC water splitting.

Key words: Bismuth vanadate, Photoelectrochemical water oxidation, Photoanode, Interface bonding, Multi-metal synergy