催化学报 ›› 2025, Vol. 78: 229-241.DOI: 10.1016/S1872-2067(25)64832-7

• 论文 • 上一篇    下一篇

界面Ni‒N化学键增强NiSe/Cv-C3N5 S型异质结中电荷迁移促进光催化全分解水

曹燕a, 叶霖b, 袁扬尘a, 杨瑞涛a, 洪辉a, 陈景文a, 陆锦仪a, 崔恩田a, 江吉周c,*()   

  1. a盐城工学院环境科学与工程学院, 江苏盐城 224051
    b盐城市质量技术监督综合检验检测中心, 江苏盐城 224051
    c武汉工程大学材料科学与工程学院, 磷矿及其共伴生资源绿色高效开发利用全国重点实验室, 磷资源开发利用教育部工程研究中心, 绿色化工过程教育部重点实验室, 等离子体化学与新材料湖北省重点实验室, 新型催化材料湖北省工程研究中心, 湖北武汉 430205
  • 收稿日期:2025-04-28 接受日期:2025-06-26 出版日期:2025-11-18 发布日期:2025-10-14
  • 通讯作者: *电子信箱: 027wit@163.com (江吉周).
  • 基金资助:
    国家自然科学基金(62004143);湖北省重点研发计划(2022BAA084);湖北省教育厅科学技术研究计划重点项目(D20241501);江苏高校自然科学基金重点项目(23KJA150010);江苏省青蓝工程;磷资源开发利用教育部工程研究中心(LCX202404)

Ni-N bonds boost S-scheme charge transfer in NiSe/Cv-C3N5 for efficient water splitting

Yan Caoa, Lin Yeb, Yangchen Yuana, Ruitao Yanga, Hui Honga, Jingwen Chena, Jinyi Lua, Entian Cuia, Jizhou Jiangc,*()   

  1. aSchool of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, Jiangsu, China
    bYancheng Quality and Technical Supervision Comprehensive Inspection and Testing Center, Yancheng 224051, Jiangsu, China
    cSchool of Materials Science and Engineering, State Key Laboratory of Green and Efficient Development of Phosphorus Resources, Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, Novel Catalytic Materials of Hubei Engineering Research Center, Wuhan Institute of Technology, Wuhan 430205, Hubei, China
  • Received:2025-04-28 Accepted:2025-06-26 Online:2025-11-18 Published:2025-10-14
  • Contact: *E-mail: 027wit@163.com (J. Jiang).
  • Supported by:
    National Natural Science Foundation of China(62004143);Key R&D Program of Hubei Province(2022BAA084);Key Project of Scientific Research Plan of Hubei Provincial Department of Education(D20241501);Major Project of Natural Science Foundation of Jiangsu Universities, China(23KJA150010);Qinglan Project of Jiangsu Province, and the Innovation Project of Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education(LCX202404)

摘要:

光催化全分解水是获取清洁氢能源的理想方式之一. 然而, 现有光催化材料仍受到太阳光利用率低、光生载流子复合速率快以及氧化还原能力弱等问题的限制, 导致无法实现高效的光催化水全分解. 因此, 开发高效催化剂是光催化研究领域的核心挑战之一. S型异质结光催化剂因内建电场(IEF)和具有强氧化还原能力的光生载流子, 具备实现高效的光催化全分解水的潜力. 但传统S型异质结光催化剂仍面临界面作用弱和接触面积小等挑战, 极大地阻碍了界面电荷的有效转移. 构筑真实有效的界面化学键不仅能有效解决结合力弱的问题, 而且可以为光生电荷迁移提供快速通道, 延长光生载流子的寿命, 从而大幅提升光催化效率. 因此, 精确设计具有界面键合的S型异质结光催化剂是实现高效光催化全分解水的一种有效策略.

本文通过在具有碳空位的C3N5纳米片(Cv-C3N5)上原位生长NiSe纳米颗粒的策略, 合成了一种具有界面Ni-N键的NiSe/Cv-C3N5 S型异质结光催化剂, 实现了全分解水性能的显著提升. 在可见光照射下, NiSe/Cv-C3N5在纯水中的析氢和析氧速率分别达到了1956.1和989.1 μmol g-1 h-1. 光谱分析和密度泛函理论计算结果表明, 界面Ni-N键合是提升NiSe/Cv-C3N5异质结材料光催化全分解水性能的关键因素. 同步辐射、电子自旋共振光谱和X射线光电子能谱(XPS)等结果证明, 在组分NiSe与Cv-C3N5界面间存在Ni-N化学键. 邻近碳空位的N原子具有较高的电子密度, 起到锚定Ni2+离子的作用, 为NiSe组分的原位生长和界面Ni-N键的形成提供反应位点. 界面Ni-N键的形成将NiSe和Cv-C3N5组分整合成为有机整体, 极大地提升了光催化反应过程中NiSe/Cv-C3N5异质结结构的光稳定性和化学稳定性. 同步辐照价态XPS谱和紫外光电子能谱结果表明, 在光照条件下Cv-C3N5导带电位比NiSe的更负, 而NiSe价带电位比Cv-C3N5的更正, 具备了形成S型电子转移机制的客观前提. 同时在NiSe与Cv-C3N5 界面处形成的内建电场, 可为光生载流子的定向迁移提供驱动力. 同步辐照价态XPS谱结果证明, 光照下光生电子由Ni原子经由Ni-N界面键向N原子迁移, 位于NiSe导带上的低还原能力电子和Cv-C3N5 价带上的低氧化能力空穴通过S型电荷转移机制在界面处复合, 进而赋予了NiSe/Cv-C3N5体系更强的氧化和还原能力. 稳态荧光光谱、瞬态荧光光谱、电化学阻抗谱和光电流曲线结果表明, 在IEF和界面Ni-N键合的共同作用下, NiSe/Cv-C3N5体系中光生载流子在分子内和界面的转移效率相较于单一组分都有明显的提升, 极大地提升了光生电子和空穴的寿命. 因此, 界面Ni-N键和界面电场不仅协同促进快速的光生电荷分离和转移, 还大幅提升了NiSe/Cv-C3N5的氧化还原能力, 实现了高效的光催化全分解水.

综上, 本文以富氮型氮化碳材料(C3N5)为基础, 设计并合成了一种具有界面键合的NiSe/Cv-C3N5异质结光催化材料, 同步实现了光生电子快速迁移和强氧化还原能力的电子-空穴的空间分离, 为设计和合成高效光催化剂提供了新思路.

关键词: 光催化, NiSe/Cv-C3N5, 水分全解, 强界面化学键合, 内建电场

Abstract:

Constructing heterojunction photocatalysts is a highly effective strategy for achieving overall water splitting, particularly by overcoming the challenge of sluggish electron-hole transport. This study employed a defect-induced in situ growth approach to anchor NiSe onto carbon-vacancy-rich C3N5 (Cv-C3N5), forming interfacial Ni-N bonds. The resulting NiSe/Cv-C3N5 heterojunction exhibited stoichiometric H2 and O2 evolution rates of 1956.1 and 989.1 μmol g-1 h-1, respectively, 8.4 times higher than a counterpart lacking interfacial bonding. Both theoretical calculations and experimental data confirmed that the Ni-N bonds were instrumental in enhancing photocatalytic performance by inducing and reinforcing S-scheme charge transfer. Illumination X-ray photoelectron spectroscopy analysis revealed that a synergistic charge transfer pathway: photoexcited electrons from the NiSe conduction band migrated sequentially to Ni atoms, then to N atoms, and ultimately recombined with holes in the Cv-C3N5 valence band. Moreover, these interfacial bonds significantly lowered the energy barrier and shortened the transport distance for electron transfer, amplifying the built-in interfacial electric field and accelerating charge dynamics. This study provides critical insights into the rational design of heterojunction photocatalysts for efficient water splitting.

Key words: Photocatalysis, NiSe/Cv-C3N5, Overall water splitting, Strong interfacial chemical bonds, Built-in electric field