催化学报 ›› 2025, Vol. 79: 100-111.DOI: 10.1016/S1872-2067(25)64835-2

• 论文 • 上一篇    下一篇

F-N共掺杂调控多孔碳实现锌空气电池5300 h超稳定ORR催化

刘保发a, 潘未接a, 黄志洋a, 赵熠a, 罗祖洋a, 塔伊尔詹•泰勒•伊西姆詹c,*(), 王宝b,*(), 杨秀林a,*()   

  1. a广西师范大学物理科学与技术学院, 化学与药学学院, 广西低碳能源材料重点实验室, 广西桂林541004, 中国
    b中国科学院过程工程研究所, 纳米科学卓越创新中心, 北京100190, 中国
    c阿卜杜拉国王科技大学, 沙特阿拉伯基础工业公司, 图瓦23955-6900, 沙特阿拉伯
  • 收稿日期:2025-05-14 接受日期:2025-08-01 出版日期:2025-12-05 发布日期:2025-10-27
  • 通讯作者: 塔伊尔詹•泰勒•伊西姆詹,王宝,杨秀林
  • 基金资助:
    国家自然科学基金(52363028);国家自然科学基金(21965005);广西自然科学基金(2021GXNSFAA076001);广西科技基地和人才课题(GUIKE AD23023004);广西科技基地和人才课题(GUIKE AD20297039)

Unlocking 5300-h ultrastable metal-free ORR catalysts for Zn-air batteries via F-N co-doped tailored carbon pore architectures and synergistic adsorption modulation

Baofa Liua, Weijie Pana, Zhiyang Huanga, Yi Zhaoa, Zuyang Luoa, Tayirjan Taylor Isimjanc,*(), Bao Wangb,*(), Xiulin Yanga,*()   

  1. aSchool of Physical Sciences and Technology, Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, Guangxi, China
    bCAS Center for Excellence in Nanoscience, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
    cSaudi Arabia Basic Industries Corporation (SABIC) at King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
  • Received:2025-05-14 Accepted:2025-08-01 Online:2025-12-05 Published:2025-10-27
  • Contact: Tayirjan Taylor Isimjan, Bao Wang, Xiulin Yang
  • Supported by:
    National Natural Science Foundation of China(52363028);National Natural Science Foundation of China(21965005);Natural Science Foundation of Guangxi Province(2021GXNSFAA076001);Guangxi Technology Base and Talent Subject(GUIKE AD23023004);Guangxi Technology Base and Talent Subject(GUIKE AD20297039)

摘要:

面对日益严峻的环境污染与能源短缺挑战, 开发高效、低成本的绿色能源转换与存储技术, 已成为解决当前能源困境的关键路径. 可充电锌空气电池(ZABs)因其超高理论能量密度(1086 Wh kg-1)、环境友好性、内在安全性和零碳排放等特性备受关注. 然而, ZABs的实际输出性能受限于空气阴极缓慢的氧还原反应(ORR), 其高过电位导致显著低的电池效率与功率输出. ORR涉及多电子转移过程且本征动力学缓慢, 亟需高效电催化剂加速该反应. 铂族金属(PGM)催化剂(如Pt/C)虽具有高活性与低过电位, 但其高昂成本与资源稀缺性严重制约ZABs的经济性与规模化应用. 开发低成本、高性能的非PGM催化剂对推动下一代能源技术至关重要.
本文通过气相蚀刻和牺牲模板法设计了氮、氟共掺杂的中空多孔碳球(FNC). 通过调整氟化铵与碳球的比例以及退火温度, 可以有效地对催化剂进行改性. 改性后的催化剂具有较高的比表面积、丰富的介孔以及高比例的半离子碳-氟键和吡啶氮, 协同提升了ORR活性和稳定性. 电化学测试表明, 该催化剂在0.1 mol L‒1 KOH中的ORR性能可与商业Pt/C催化剂相媲美, 其半波电位达到0.87 V (vs. RHE), 并展现出显著提高的稳定性(在循环21 h后仅衰减6.9%). 基于FNC-900卓越的ORR性能, 构建了具有流动电解质的ZABs, 作为液态电解质锌空气电池的空气阴极, FNC-900开路电压达到1.579 V且峰值功率密度可达172 mW cm-2. 同时在5 mA cm-2的恒定电流密度下实现超过5300 h的出色循环稳定性. 此外, FNC空气阴极在高电流密度(10和20 mA cm-2)下能够稳定运行超过1328和773 h. 组装的柔性以及纽扣ZAB也具有出色的峰值功率密度和稳定性. 理论计算和原位表征表明, 碳和氟之间显著的电负性差异有利于在吡啶氮附近形成坚固的碳-氟键, 氟的掺入重构了吡啶氮的电子结构, 有效地优化了氧中间体的吸附/解吸, 解决传统氮掺杂碳氧吸附能不足的问题, 提高了ORR速率. 晶体轨道哈密顿分析表明, 氟掺杂减少了费米能级处的反键态, 从而提高了键强度, 获得了更高的稳定性.
综上, 本文通过引入杂原子来调节碳材料催化剂这一概念和策略, 为未来设计具有高活性和高稳定性的无金属氧还原反应催化剂提供了指导. 组装的水性和柔性ZABs均展现出较好的性能和稳定性, 这突显了其在下一代可穿戴电子设备和可持续能源存储系统中的潜力.

关键词: 杂原子掺杂, 无金属碳材料, 氧还原反应, 稳定性, 锌空气电池

Abstract:

Designing exceptional-performance and long-lasting oxygen reduction reaction (ORR) catalysts is a critical challenge for the development of rechargeable Zn-air batteries (ZABs). In this study, we introduce a metal-free ORR catalyst composed of F-N co-doped hollow carbon (FNC), specifically engineered to address the limitations of conventional catalysts. The FNC catalysts were synthesized using a template-assisted pyrolysis method, resulting in a hollow, porous architecture with a high specific surface area and numerous active sites. Concurrently, F doping optimized the electronic configuration of pyridinic nitrogen. The introduction of C-F bonds reduced the reaction energy barrier, and the resulting N-C-F configuration enhanced the stability of the nitrogen center. The catalyst exhibits outstanding ORR activity in alkaline media, exhibiting a half-wave potential (E1/2) of 0.87 V, surpassing that of commercial Pt/C (E1/2 = 0.85 V). When applied to both aqueous and flexible ZAB configurations, the FNC catalyst achieved peak power densities of 172 and 85 mW cm-2, respectively, along with exceptional cycling stabilities exceeding 5300 and 302 h, respectively. This study establishes a novel approach for designing metal-free ORR catalysts and next-generation ZABs, particularly for use in flexible and wearable microelectronic devices.

Key words: Heteroatom doping, Metal-free carbon, Oxygen reduction reaction, Stability, Zn-air batteries