催化学报 ›› 2025, Vol. 79: 112-126.DOI: 10.1016/S1872-2067(25)64844-3

• 论文 • 上一篇    下一篇

晶格氧迁移诱导的VPO催化剂在甲醛乙酸缩合反应中的活性相转变

牛引红a,b, 石振a, 遇治权a, 郭强a, 穆骏驹a, 梁亚飞a,c, 张志鑫a,b,*(), 王胜a, 王峰a,b,*()   

  1. a中国科学院大连化学物理研究所, 能源催化转化全国重点实验室, 辽宁大连116023
    b中国科学院大学, 北京100049
    c郑州大学化学学院, 绿色催化中心, 河南郑州450001
  • 收稿日期:2025-04-21 接受日期:2025-08-19 出版日期:2025-12-18 发布日期:2025-10-27
  • 通讯作者: 张志鑫,王峰
  • 基金资助:
    国家自然科学基金(22025206);大连市高层次人才创新支持计划(2022RG13);大连化物所创新研究基金(DICP I202327);大连化物所创新研究基金(DICP I202473);新疆生产建设兵团科技计划(2023AA006);榆林首席科学家+首席工程师团队建设项目(YLKG-2022-12);延长石油-大连化物所探索性科研项目(yc-hw-2023ky-06)

Lattice oxygen transfer induced active phase transition of VPO catalysts in cross condensation of acetic acid and formaldehyde

Yinhong Niua,b, Zhen Shia, Zhiquan Yua, Qiang Guoa, Junju Mua, Yafei Lianga,c, Zhixin Zhanga,b,*(), Sheng Wanga, Feng Wanga,b,*()   

  1. aState Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China
    bUniversity of Chinese Academy of Sciences, Beijing 100049, China
    cGreen Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, Henan, China
  • Received:2025-04-21 Accepted:2025-08-19 Online:2025-12-18 Published:2025-10-27
  • Contact: Zhixin Zhang, Feng Wang
  • Supported by:
    National Natural Science Foundation of China(22025206);Dalian Innovation Support Plan for High Level Talents(2022RG13);DICP(DICP I202327);DICP(DICP I202473);Science and Technology Program of Xinjiang Production and Construction Corps(2023AA006);Scientists and Engineers team project of Yulin(YLKG-2022-12);Exploratory project of Yanchang Petroleum(yc-hw-2023ky-06)

摘要:

丙烯酸(AA)是一种重要的聚合物单体, 目前主要依赖丙烯两步氧化法制备. 通过煤基甲醇衍生物甲醛(FA)与乙酸(HAc)一步缩合反应直接合成AA, 可降低对丙烯的依赖并实现资源高效利用. 钒磷氧(VPO)催化剂在催化该反应中展现出优异的AA选择性, 但其复杂的晶相组成(如V4+晶相(VO)2P2O7及V5+的多种VOPO4异构体)和动态不稳定性导致活性相归属存在长期争议, 晶相演变机制与催化性能的构效关系有待深入研究. 因此, 揭示VPO催化剂在实际催化反应中活性相的动态演变规律及其本质, 对设计高活性、高稳定性的催化剂及推动一步法AA合成技术工业化至关重要.
本文系统研究了四种VPO晶相((VO)2P2O7, β-VOPO4, δ-VOPO4, ω-VOPO4)在催化FA和HAc缩合反应过程中的晶相转变, 研究了引起催化剂晶相转变的因素, 并分析了催化剂晶相与活性之间的关系. 通过X射线衍射(XRD)、透射电镜(TEM)、拉曼光谱(Raman)以及X射线光电子能谱(XPS)分别对四种晶相在催化反应不同阶段的四种晶相组成进行识别, 发现以下规律: 在催化反应过程中, (1) V4+晶相(VO)2P2O7的体相晶相结构保持稳定, 仅表面发生局部的晶相转变; (2) β-VOPO4(V5+)被可逆还原为VOHPO4(V4+); (3) δ-VOPO4(V5+)首先快速转变为αII-VOPO4(V5+), 随后αII-VOPO4进一步被可逆还原为R1-VOHPO4(V4+)晶相; (4) ω-VOPO4(V5+)则会优先快速转变为δ-VOPO4, 然后再依次还原为αII-VOPO4和R1-VOHPO4. V5+晶相的最终还原相VOHPO4和R1-VOHPO4均可通过空气处理分别再生为β-VOPO4αII-VOPO4, 同时结合XPS和氢气-程序升温还原(H2-TPR)结果证明了R1-VOHPO4为V4+晶相. 通过电感耦合等离子体发射光谱和X射线荧光光谱证明R1的元素组成为VOHPO4. 通过考察反应条件下单一原料对VPO晶相的影响, 发现反应中碳质物种会引起V5+晶相发生转变, 而载气和H2O的影响可被排除, 同时再次证实了V5+晶相的转变规律. H2-TPR和氢气气氛下的原位XRD结果表明, 直接通过氢气还原即可引发δ-VOPO4晶相发生与反应条件下一致的晶相转变结果. 结合控制变量实验、H2-TPR与原位XRD的结果, 可证明体系中的碳质物种被晶格氧氧化, 引起V5+晶相中晶格氧的流失, 从而导致了V5+晶相间的转变; 而在晶格氧流失过程中伴随质子的转移, 则导致V5+晶相中钒价态的降低. 然后对催化反应过程中所出现晶相的活性进行比较分析, 发现(VO)2P2O7晶相具有最高的AA选择性, 达到93.7%; 而δ-VOPO4在催化反应初期所形成αII-VOPO4和R1-VOHPO4共存状态的乙酸转化率最高(14.7%). 考虑比表面积对催化剂活性的贡献, 对各晶相的乙酸转化速率基于比表面积归一化处理(单位: mmol‧m‒2‧g‒1‧h‒1), 发现含V5+晶相催化剂的比醋酸活化速率高于V4+晶相(R1-VOHPO4和(VO)2P2O7). 这些活性数据表明, VPO在催化甲醛醋酸一步缩合制备AA的过程中, V5+晶相有利于醋酸活化, 而(VO)2P2O7晶相有利于AA选择性的提高. V5+晶相表面的P=O键更易活化乙酸的α-C-H键, 从而导致V5+晶相对乙酸的活化能力较高; 而其AA选择性较低是由于V5+晶相转变过程中所释放的晶相氧导致较多氧化产物的生成.
综上, 本文阐明了VPO催化剂在实际催化反应中的晶相组成和动态相变机制, 对设计甲醛乙酸一步缩合法制备丙烯酸反应的高效催化剂具有指导意义.

关键词: 钒磷氧催化剂, 晶相转变, 乙酸, 甲醛, 交叉缩合, 丙烯酸

Abstract:

Vanadium phosphorus oxide (VPO) catalyst is a promising candidate for the condensation reaction of formaldehyde (FA) and acetic acid (HAc) to produce acrylic acid (AA). However, the complexity of the active phases and their dynamic interconversion under redox conditions has led to controversies regarding the actual active phase in this reaction. To address this, this study systematically investigates the phase transition and underlying mechanism of VPO catalysts under reaction conditions. X-ray diffraction (XRD) patterns, Raman spectra, transmission electron microscopy images and X-ray photoelectron spectroscopy collectively demonstrated that the V4+ phase (VO)2P2O7 retained the bulk phase structure throughout the reaction, with only minor surface phase transition observed. In contrast, the V5+ phase underwent reduction to other phases in both bulk and surface regions. Specifically, the δ-VOPO4 phase rapidly transformed into the αII-VOPO4 phase, which could reversibly convert into the R1-VOHPO4 phase (V4+). Controlled variable experiments, H2-temperature programmed reduction and in-situ XRD experiments in a hydrogen atmosphere further demonstrated that these phase transitions were primarily attributed to the loss of lattice oxygen. The presence of V4+ phase in VPO catalysts enhanced the selectivity of acrylic acid, while the existence of V5+ phase promoted the activation of acetic acid. This work elucidates the redox-driven phase evolution of VPO catalysts and offers valuable insights for designing efficient catalysts for FA-HAc cross-condensation by balancing phase stability and activity.

Key words: Vanadium phosphorus oxide, Phase transition, Acetic acid, Formaldehyde, Cross condensation, Acrylic acid