催化学报 ›› 2025, Vol. 79: 219-230.DOI: 10.1016/S1872-2067(25)64818-2

• 论文 • 上一篇    下一篇

界面工程调控的S型2D/1D Cs0.32WO3/WO3·2H2O异质结用于增强CO2光还原: 协同电荷分离与活化机制研究

甘广梅, 尹琳, 王小田, 邢巨元, 李源, 张高科*()   

  1. 武汉理工大学矿物资源加工与环境湖北省重点实验室, 关键非金属矿产资源绿色利用教育部重点实验室, 硅酸盐建筑材料国家重点实验室, 湖北武汉430070
  • 收稿日期:2025-06-13 接受日期:2025-07-25 出版日期:2025-12-18 发布日期:2025-10-27
  • 通讯作者: 张高科
  • 作者简介:1共同第一作者.
  • 基金资助:
    国家自然科学基金(22361132537);国家自然科学基金(92163125);湖北省科技创新人才计划(2023DJC35)

Interface-engineered S-scheme 2D/1D heterojunction of Cs0.32WO3/WO3·2H2O for boosted CO2 photoreduction: Synergistic charge separation and activation

Guangmei Gan, Lin Yin, Xiaotian Wang, Juyuan Xing, Yuan Li, Gaoke Zhang*()   

  1. Hubei Key Laboratory of Mineral Resources Processing and Environment, Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, Hubei, China
  • Received:2025-06-13 Accepted:2025-07-25 Online:2025-12-18 Published:2025-10-27
  • Contact: Gaoke Zhang
  • About author:1Contributed equally to this work.
  • Supported by:
    National Natural Science Foundation of China(22361132537);National Natural Science Foundation of China(92163125);Hubei Province Science and Technology Innovation Talent Plan(2023DJC35)

摘要:

近年来, 碳资源高值化利用与太阳能转化技术的深度融合为绿色能源体系的构建提供了全新发展路径. 特别是以太阳能驱动的CO2还原反应, 因其可实现温室条件下的气体资源化利用与清洁燃料协同生成, 成为应对能源危机与环境问题的潜在解决方案. 然而, CO2分子热力学稳定性高、动力学活化难度大, 且其还原过程涉及多电子和多质子协同转移, 导致在温和条件下实现高效且高选择性的转化仍面临巨大挑战. 目前多数光催化体系存在光生载流子易复合、界面协同效应弱、CO2吸附活化能力差等问题, 严重制约了其催化效率和产物选择性. 因此, 构建具有合理能带匹配关系、显著界面耦合效应和优异电荷分离能力的新型异质结光催化剂, 成为提升CO2光还原性能、推动该领域突破的重要研究方向.
本文采用超声辅助策略, 构建了一种新型S型异质结光催化剂, 由具备六方结构的还原型Cs0.33WO3 (CWO)纳米片与单斜结构的氧化型WO3·2H2O (WO)纳米棒复合形成. 通过调控复合比例, 获得了最优催化剂CWO/WO-0.8 (CWO与WO的质量比为80%), 其在全光谱照射条件下表现出优异的CO2光还原性能, 在反应4 h后, CH3OH与CO的生成量分别达到63.71和29.74 μmol·g-1, 远优于纯CWO或WO组分. 光催化性能的显著提升归因于两组分间形成的S型电荷转移路径, 该路径在界面处引发内建电场, 有效抑制了光生电子与空穴的复合, 促进载流子的高效分离与定向迁移, 使得电子在CWO表面富集, 从而增强了CO2分子的吸附与还原活性. 通过紫外-可见漫反射光谱和瞬态光电流等光物理测试手段发现, 该异质结体系在可见光及近红外区域具有更强的光吸收能力与更优的光生电子利用率; 开尔文探针力显微镜与飞秒瞬态吸收光谱测试分析进一步验证了界面处的内建电场增强了电子传输能力. 密度泛函理论计算与CO2程序升温脱附分析表明, CWO/WO异质结比各单一组分更易与CO2发生物理和化学吸附, 具备更强的CO2活化能力. 进一步通过原位漫反射红外光谱追踪反应过程, 成功监测到CO2还原中间体, 并揭示了CH3OH生成过程中的可能路径. 研究还表明, 反应中S型电子传输行为在促进逐步电子转移过程中起到关键作用, 进而有效提升了反应的选择性与产率.
综上, 本研究通过构建具有内建电场的S型异质结CWO/WO, 实现了CO2在全光谱照射条件下的高效还原转化, 成功合成了以CH3OH为主的高附加值产物, 拓展了光驱动CO2转化的新策略, 并为后续高效异质结光催化剂的构筑及机理研究提供了理论依据与实验参考.

关键词: S型异质结, 光催化CO2还原, Cs0.32WO3, WO3·2H2O, 甲醇

Abstract:

Developing efficient photocatalysts for CO2 conversion under full-spectrum irradiation remains a key challenge for solar-to-chemical energy conversion. In this study, a novel S-scheme heterojunction composed of reduction Cs0.32WO3 (CWO) nanosheets with hexagonal structure and oxidation WO3·2H2O (WO) nanorods with monoclinic structure photocatalyst was successfully constructed via an ultrasound strategy. Under full-spectrum irradiation for 4 h, the optimized 2D/1D of heterostructure CWO/WO-0.8 exhibited superior photocatalytic performance, achieving CO and CH3OH yields of 29.74 and 63.71 μmol·g-1, respectively. The enhanced activity is primarily ascribed to the formation of an S-scheme charge transfer pathway, which facilitates efficient separation and directional migration of photogenerated charge carriers through the internal electric field at the CWO/WO interface. This process facilitates the electron enrichment on the CWO surface and significantly enhances its CO2 reduction ability. Besides, the results of various characterizations show that CWO/WO-0.8 possesses enhanced optical response capability. The results of density functional theory calculations and CO2-temperature programmed desorption analysis confirmed that the CWO/WO heterojunction exhibits stronger CO2 adsorption and activation abilities compared to the pristine CWO and WO. The reaction pathway for CH3OH production was elucidated by in-situ diffused reflectance Fourier transformed infrared tests. This work provides new insights into the rational design of S-scheme photocatalysts for efficient and selective CO2 conversion.

Key words: S-scheme heterojunction, Photocatalysts CO2 reduction, Cs0.32WO3, WO3·2H2O, CH3OH