催化学报 ›› 2025, Vol. 79: 231-239.DOI: 10.1016/S1872-2067(25)64843-1

• 论文 • 上一篇    

S型Cd0.8Zn0.2S纳米线/CeO2纳米立方体异质结用于高效光催化产氢

鄢雨晴a, 吴永辉a, 汪军a, 霍晋荣b, 杨凯a, 卢康强a,*()   

  1. a江西理工大学化学化工学院, 江西赣州341000
    b西安工业大学基础学院, 陕西西安710021
  • 收稿日期:2025-06-23 接受日期:2025-08-06 出版日期:2025-12-18 发布日期:2025-10-27
  • 通讯作者: 卢康强
  • 基金资助:
    国家自然科学基金(22462010);国家自然科学基金(22366018);江西省自然科学基金(20252BAC220013);江西省自然科学基金(20224BAB203018);江西省自然科学基金(20212BAB213016);江西省自然科学基金(20232ACB203022);江西省“双千计划”(jxsq2023102143);江西省“双千计划”(jxsq2023102142);江西省“双千计划”(jxsq2023201086);江西省“双千计划”(jxsq2023102141);江西省“双千计划”(jxsq2019102053)

S-scheme Cd0.8Zn0.2S nanowires/CeO2 nanocubes heterojunction for efficient photocatalytic hydrogen evolution

YuQing Yana, YongHui Wua, Jun Wanga, JinRong Huob, Kai Yanga, KangQiang Lua,*()   

  1. aJiangxi Provincial Key Laboratory of Functional Crystalline Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi, China
    bSchool of Basic Sciences, Xi'an Technological University, Xi'an 710021, Shaanxi, China
  • Received:2025-06-23 Accepted:2025-08-06 Online:2025-12-18 Published:2025-10-27
  • Contact: KangQiang Lu
  • Supported by:
    National Natural Science Foundation of China(22462010);National Natural Science Foundation of China(22366018);Jiangxi Provincial Natural Science Foundation(20252BAC220013);Jiangxi Provincial Natural Science Foundation(20224BAB203018);Jiangxi Provincial Natural Science Foundation(20212BAB213016);Jiangxi Provincial Natural Science Foundation(20232ACB203022);Jiangxi Province “Double Thousand Plan”(jxsq2023102143);Jiangxi Province “Double Thousand Plan”(jxsq2023102142);Jiangxi Province “Double Thousand Plan”(jxsq2023201086);Jiangxi Province “Double Thousand Plan”(jxsq2023102141);Jiangxi Province “Double Thousand Plan”(jxsq2019102053)

摘要:

Cd0.8Zn0.2S(CZS)因具有良好的光催化还原能力和较宽的光吸收范围, 在光催化产氢领域备受关注. 然而, 单组分的CZS仍存在光生载流子复合速率快、易发生光腐蚀等固有缺陷, 导致其光催化活性较低、稳定性较差. 在众多光催化剂改性策略中, 异质结构建是应对上述问题的有效方法. 其中, S型异质结因其能保留各组分强氧化还原能力, 同时通过独特的能带结构促进光生载流子的定向分离与迁移, 成为近年来的研究热点. 因此, 将CZS与能带位置匹配的CeO2结合, 构建S型异质结, 有望改善复合光催化剂中光生载流子快速复合等问题, 从而实现高性能的光催化产氢.
本文通过水热法在CeO2纳米立方体上原位生长CZS纳米线, 制备了一系列S型CZS-CeO2异质结复合光催化剂, 并用于在模拟太阳光照射下的高效光催化产氢. 通过透射电镜和扫描电镜等表征手段, 证实了CZS纳米线均匀负载在CeO2纳米立方体上, 形成紧密的异质结界面结构, 为载流子的高效转移提供了基础. 进一步通过紫外-可见漫反射光谱、Tauc曲线和莫特-肖特基图谱等证实了CZS和CeO2之间存在匹配的能级结构, 其导带(CB)与价带(VB)位置有利于形成S型异质结. 随后, 通过原位X射线光电子能谱与密度泛函理论计算, 共同验证了CZS-CeO2复合材料中的S型电荷转移机制. 在CZS-CeO2复合光催化体系中, S型异质结的形成保留了更强的氧化还原能力, 同时有效抑制了光生空穴氧化光腐蚀CZS, 并促进了光生载流子的高效分离. 因此, 与纯CZS和CeO2相比, CZS-CeO2复合材料的光催化产氢性能显著提升. 值得注意的是, CZS-15%CeO2复合材料的光催化产氢速率达到58 mmol·g‒1·h‒1, 约为纯CZS的8.8倍. 此外, CZS-CeO2复合材料在5次循环测试后仍保持相对较高的光催化产氢活性, 表明S型异质结的构建有效地改善了CZS的光腐蚀问题. 系列光电化学表征结果表明, S型CZS-CeO2异质结的形成拓宽了复合材料的光吸收范围, 增大了反应活性面积, 并有效促进了光生载流子的分离与迁移, 从而提高了光催化产氢性能.
综上, 本文通过将CZS纳米线原位生长在CeO2纳米立方体上, 成功构建了一种S型CZS-CeO2异质结光催化剂, 并阐明了其S型光催化产氢电荷转移机理. 该S型异质结光催化剂凭借独特的能带结构, 实现了高效的电荷转移, 展现出良好的光催化产氢活性与稳定性, 有望为设计高效的S型异质结光催化体系提供新思路.

关键词: 光催化析氢, CeO2, Cd0.8Zn0.2S, S型异质结, 内建电场

Abstract:

Constructing S-scheme heterojunctions preserves the intrinsic redox capabilities of both semiconductors while promoting the separation of photogenerated electrons and holes, making it a promising approach for enhancing the properties of semiconductors. In this study, an S-scheme Cd0.8Zn0.2S-CeO2 (CZS-CeO2) heterojunction was successfully fabricated via the in-situ growth of CZS nanowires on CeO2 nanocubes. The S-scheme charge-transfer mechanism of the CZS-CeO2 composites during photocatalytic reactions was confirmed through in-situ X-ray photoelectron spectroscopy and density functional theory calculations. These results demonstrate that the interfacial electric field (IEF) significantly facilitates charge separation and transport within the heterojunction. Consequently, the CZS-CeO2 composites exhibited excellent photocatalytic hydrogen production performance under simulated sunlight irradiation, surpassing that of blank CZS. Particularly, the optimal photocatalytic hydrogen generation rate for CZS-15%CeO2 reached 58 mmol·g-1·h-1, approximately 8.8 times higher than that of blank CZS. After five consecutive cycles of testing, CZS-15%CeO2 retained a relatively high level of activity. This enhanced stability can be attributed to the fabrication of S-scheme heterojunctions, which effectively suppressed hole-induced photocorrosion of CZS. This investigation provides a beneficial reference for the rational design of S-scheme heterojunction photocatalysts for efficient and stable photocatalytic hydrogen production.

Key words: Photocatalytic hydrogen evolution, CeO2, Cd0.8Zn0.2S, S-scheme heterojunction, Built-in electric field