催化学报 ›› 2025, Vol. 72: 24-47.DOI: 10.1016/S1872-2067(24)60257-3

• 综述 • 上一篇    下一篇

太阳能驱动S型异质结光催化剂制备过氧化氢

李瀚a, 王往b,c, 许凯强d, 程蓓b,c, 许景三e, 曹少文b,c,*()   

  1. a湖北汽车工业学院汽车材料学院, 湖北十堰 442020, 中国
    b武汉理工大学材料复合新技术全国重点实验室, 湖北武汉 430070, 中国
    c武汉理工大学湖北省先进复合材料技术创新中心, 湖北武汉 430070, 中国
    d上海应用技术大学化学与环境工程学院, 上海 201418, 中国
    e昆士兰科技大学化学与物理学院材料科学中心, 昆士兰布里斯班 4001, 澳大利亚
  • 收稿日期:2024-11-21 接受日期:2025-01-11 出版日期:2025-05-18 发布日期:2025-05-20
  • 通讯作者: *电子信箱: swcao@whut.edu.cn (曹少文).
  • 基金资助:
    国家重点研发计划(2022YFE0114800);广西科技重大专项(桂科AA24263054);国家自然科学基金(52472245);国家自然科学基金(22278324);国家自然科学基金(52073223);湖北汽车工业学院博士科研启动基金(BK202413)

Solar-driven H2O2 production by S-scheme heterojunction photocatalyst

Han Lia, Wang Wangb,c, Kaiqiang Xud, Bei Chengb,c, Jingsan Xue, Shaowen Caob,c,*()   

  1. aSchool of Automotive Materials, Hubei University of Automotive Technology, Shiyan 442020, Hubei, China
    bState Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, Hubei, China
    cHubei Technology Innovation Center for Advanced Composites, Wuhan University of Technology, Wuhan 430070, Hubei, China
    dSchool of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
    eSchool of Chemistry and Physics & Centre for Materials Science, Queensland University of Technology, Brisbane, Queensland 4001, Australia
  • Received:2024-11-21 Accepted:2025-01-11 Online:2025-05-18 Published:2025-05-20
  • Contact: *E-mail: swcao@whut.edu.cn (S. Cao).
  • About author:Shaowen Cao (State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology) was appointed as the young member of the Editorial Board of Chinese Journal of Catalysis in 2017. Professor Shaowen Cao received his B.S. in Geochemistry in 2005 from the University of Science and Technology of China, and his Ph.D. in Materials Chemistry & Physics in 2010 from the Shanghai Institute of Ceramics, Chinese Academy of Sciences. He then worked as a Research Fellow at the School of Materials Science and Engineering, Nanyang Technological University until Feb. 2014. He is now a Professor at State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology. From Mar 2018 to Feb 2020, he was a Visiting Scientist at Max Planck Institute of Colloids and Interfaces. His current research interests include the design and fabrication of photocatalytic materials for energy and environmental applications. He is the author or co-author of more than 150 peer-reviewed scientific papers., with over 22000 citations, an H-index 70 and 26 ESI highly cited papers. He is also one of the “Highly Cited Researchers” from 2018 to 2024 awarded by Clarivate Analytics.
  • Supported by:
    National Key R&D Program of China(2022YFE0114800);Guangxi Science and Technology Major Program(AA24263054);National Natural Science Foundation of China(52472245);National Natural Science Foundation of China(22278324);National Natural Science Foundation of China(52073223);Doctoral Scientific Research Foundation of Hubei University of Automotive Technology(BK202413)

摘要:

过氧化氢(H2O2)作为一种重要和绿色的化学品, 被广泛应用于能源和环境领域. 然而, H2O2的制备主要依靠蒽醌法, 该方法能耗高,涉及多步反应, 并且会产生有害的副产物. 太阳能驱动的H2O2合成作为一种替代方法,是一种绿色和可持续的技术, 因为仅使用水和氧气作为原料. 然而, 载流子的快速复合以及氧化还原能力不足限制了光催化制H2O2的性能. 构建S型(S-scheme)异质结光催化剂被认为是一种有效的策略来解决这些问题, 因为它不仅能实现电荷载流子的空间分离, 还能保持光催化系统的最大的氧化还原能力. 用于制备H2O2的各种S型异质结光催化剂已被广泛报道, 因此, 有必要对S型异质结制备H2O2的最新研究进展进行总结.

本文系统总结了用于生产H2O2的S型异质结光催化剂的最新进展. 首先简要介绍了Ⅱ型异质结、传统Z型异质结、S型异质结的发展历程以及相应的载流子转移机理和区别. 然后阐明了S型异质结光催化剂的基本原则和表征技术, 如原位X射线光电子能谱、原位开尔文探针力显微镜、飞秒超快吸收光谱、电子顺磁共振波谱、密度泛函理论计算. 此外, 系统总结了用于生产H2O2的S型异质结光催化剂的制备策略, 包括原位界面生长法、自组装法、溶剂蒸发沉积法、共沉淀法, 并讨论了各种制备方法的优缺点. 重点讨论了光催化制备H2O2的机理, 包括氧还原反应路径、水氧化反应路径、双通道路径, 也简要介绍了光催化制备H2O2机理的表征方法. 同时, 重点阐述了S型异质结光催化剂制备H2O2的优势, 如增强的光吸收能力、优异的光激发载流子分离和转移能力、强氧化还原能力. 接下来, 总结和讨论了近期的S型异质结设计策略, 包括无机-无机S型异质结、无机-有机S型异质结、有机-有机S型异质结. 最后, 总结了S型异质结光催化剂制备H2O2所面临的挑战和未来的发展方向: (1)将S型异质结与其他改性策略相结合, 通过协同作用进一步提高光催化性能. (2)通过合理设计表面性质, 包括构建特定的活性位点和三相界面设计, 提高S型异质结对氧气和水的吸附能力. (3)构筑双功能活性位点, 进而通过双通道路径实现H2O2的全合成. (4)通过氧还原路径制备H2O2与有机合成反应相结合, 以充分利用光生电子和空穴, 实现绿色和可持续发展的目标. (5)利用原位表征技术和密度泛函理论计算进一步探究H2O2的生成机理. (6)原位生成的H2O2的分离和直接利用有待探索.

综上, 本文系统总结了S型异质结光催化剂制备H2O2的最新研究进展以及面临的挑战和未来的发展方向, 旨在为用于制备H2O2的S型异质结的设计提供一定的参考.

关键词: S型异质结, H2O2光合成, 电荷转移机理, 太阳能转化

Abstract:

Hydrogen peroxide (H2O2), as an essential and green chemical, is extensively used in energy and environmental applications. However, the production of H2O2 primarily relies on the anthraquinone method, which is an energy-intensive method involving multi-step reactions, producing harmful by-product wastes. Solar-driven H2O2 production, an alternative route for H2O2 generation, is a green and sustainable technology since it only utilizes water and oxygen as feedstock. However, the rapid recombination of charge carriers as well as insufficient redox capability limit the photocatalytic H2O2 production performance. Constructing step-scheme (S-scheme) heterojunction photocatalysts has been regarded as an effective strategy to address these drawbacks because it not only achieves spatially separated charge carriers, but also preserves redox capability of the photocatalytic system. This paper covers the recent advances of S-scheme heterojunction photocatalysts for H2O2 production in terms of basic principles, characterization techniques, and preparation strategies. Moreover, the mechanism and advantages of S-scheme heterojunction for photocatalytic H2O2 generation are systematically discussed. The recent S-scheme heterojunction designs, including inorganic-organic heterojunction, inorganic-inorganic heterojunction, and organic-organic heterojunction, are summarized. Lastly, the challenges and research directions of S-scheme photocatalysts for H2O2 generation are presented.

Key words: Step-scheme heterojunction, H2O2 photosynthesis, Charge migration mechanism, Solar conversion