催化学报 ›› 2025, Vol. 72: 48-83.DOI: 10.1016/S1872-2067(25)64653-5

• 综述 • 上一篇    下一篇

揭示复杂性: 析氧反应机理研究进展

张朋祥a, 王佳雯a, 杨天宇a, 王瑞哲a, 沈若凡a, 彭智昆a, 刘艳艳b,*(), 武现丽a,*(), 蒋剑春c, 李保军a,*()   

  1. a郑州大学化学学院, 河南郑州 450001
    b河南农业大学理学院, 河南郑州 450002
    c中国林业科学研究院林产化学工业研究所, 生物质化学利用国家工程实验室, 江苏南京 210042
  • 收稿日期:2024-11-04 接受日期:2025-02-17 出版日期:2025-05-18 发布日期:2025-05-20
  • 通讯作者: *电子信箱: lyycarbon@henau.edu.cn (刘艳艳),wuxianli@zzu.edu.cn (武现丽),lbjfcl@zzu.edu.cn (李保军).
  • 基金资助:
    国家自然科学基金(22075254);中原英才计划青年拔尖人才计划(30602674)

Unveiling complexities: Reviews on insights into the mechanism of oxygen evolution reaction

Pengxiang Zhanga, Jiawen Wanga, Tianyu Yanga, Ruizhe Wanga, Ruofan Shena, Zhikun Penga, Yanyan Liub,*(), Xianli Wua,*(), Jianchun Jiangc, Baojun Lia,*()   

  1. aCollege of Chemistry, Zhengzhou University, Zhengzhou 450001, Henan, China
    bCollege of Science, Henan Agricultural University, Zhengzhou 450002, Henan, China
    cInstitute of Chemical Industry of Forest Products, CAF, National Engineering Laboratory for Biomass Chemical Utilization, Key and Open Laboratory on Forest Chemical Engineering, SFA, Nanjing 210042, Jiangsu, China
  • Received:2024-11-04 Accepted:2025-02-17 Online:2025-05-18 Published:2025-05-20
  • Contact: *E-mail: lyycarbon@henau.edu.cn (Y. Liu), wuxianli@zzu.edu.cn (X. Wu), lbjfcl@zzu.edu.cn (B. Li).
  • About author:Yanyan Liu received her Ph.D. degree from the College of Chemistry, Zhengzhou University in 2017. She works currently as a professor for the College of Science of Henan Agricultural University. She has focused research on the microstructure engineering of wooden activated carbon, and the development of highly active and selective catalysts for biomass utilization, oxygen conversion and hydrogen production. She has published more than 60 papers and authorized more than 10 invention patents. Her work provides valuable theoretical and technical support for the large-scale preparation of highly efficient carbon catalysts, and the high-value utilization of forest resources.
    Xianli Wu received her Ph.D. degree from Materials Physics and Chemistry of Sun Yat-sen University in 2006. She works currently as a professor and doctoral supervisor for College of Chemistry, Zhengzhou University. Her work is mainly engaged in research of hydrogen energy storage, release and electrolytic water. She has published more than 40 research papers. She is also interested in investigating electrolytes and electrode materials for rechargeable batteries
    Baojun Li received his Ph.D. degree from the College of Chemistry, Nanjing University in 2009. He works as a full professor and senior engineer for the College of Chemistry of Zhengzhou University. He devotes into the precise regulation of the structure and properties of condensed matter at atomic-molecular level and the development of catalytic routes for hydrogen production and biomass utility based on metallic compounds. He has published more than 150 papers and authorized more than 20 invention patents.
  • Supported by:
    National Natural Science Foundation of China(22075254);Young Top Talent Program of Zhongyuan-Yingcai-Jihua(30602674)

摘要:

析氧反应(OER)作为关键电极反应, 在电解水制氢、金属空气电池和可再生燃料合成等能源转换体系中发挥核心作用. OER涉及复杂的多电子转移和含氧中间体的转换, 导致其动力学过程缓慢, 通常伴随着较高的过电位. 高效OER催化剂的开发依赖于对催化机制的深入理解, 以优化活性位点的电子结构、调控反应路径并突破传统吸附能量关系的限制. 随着催化科学的发展, OER机制研究已从早期的吸附演化机制和晶格氧机制(LOM)扩展至多个新兴理论, 如氧化物路径机制(OPM)、氧-氧耦合机制(OCM)和分子内氧耦合机制(IMOC). 然而, OER机制的复杂性不仅体现在不同催化剂体系间的机制差异, 还涉及催化过程中不同机制的协同作用和动态转变. 厘清OER机制的本质、建立精确的机制调控策略, 是开发高效、稳定OER催化剂的核心科学问题, 对推进电催化能源技术的工业应用具有重要意义.

本文围绕OER催化机制的最新进展展开. 首先介绍了各类OER机制的基本电化学特征与差异及适用的催化剂体系. 重点阐述了AEM和LOM等常规反应机制及OPM, OCM和IMOC等新型机制研究进展及其衍生机制的催化本质, 并系统讨论了新兴机制的提出背景及其实验和理论支持. 特别地, 重点关注不同机制的协同作用及其动态转换, 归纳了影响机制转变的关键因素, 如电子结构调控、表面重构、掺杂、空位和缺陷工程及反应环境等. 此外, 总结了当前用于OER机制研究的先进原位表征技术, 包括化学探针、电化学质谱、原位拉曼光谱、同步辐射X射线吸收谱(XAS)等, 并结合理论计算模拟方法探讨OER过程中催化活性位点的演变及反应路径的确定. 基于这些研究进展, 进一步提出了催化机制导向的催化剂设计原则, 如表界面工程、缺陷调控、多种催化路径整合、规模化合成等催化剂设计策略, 为未来高效OER催化剂的开发提供新的设计思路.

总之, 本综述系统梳理了OER催化机制的复杂性, 并提供了机制解析、催化剂设计及表征手段的全面框架, 为OER研究者提供深入的理论指导和实验参考. 展望未来, OER机制研究需进一步深入的研究并结合精准的原位/操作表征技术和多尺度理论计算, 以揭示OER催化过程的真实催化行为, 并推进催化剂设计从实验室向实际应用的跨越. 本综述希望为OER机制研究提供深刻的见解, 推动清洁能源催化技术的持续进步.

关键词: 析氧反应, 催化机理, 催化剂设计, 吸附演化机制, 晶格氧机制

Abstract:

The study of the oxygen evolution reaction (OER) mechanism is vital for advancing our understanding of this pivotal energy conversion process. This review synthesizes recent advancements in OER mechanism, emphasizing the intricate relationship between catalytic mechanisms and catalyst design. This review discusses the connotation and cutting-edge progress of traditional mechanisms such as adsorbate evolution mechanism (AEM) and lattice oxygen mechanism (LOM) as well as emerging pathways including oxide path mechanism (OPM), oxo-oxo coupling mechanism (OCM), and intramolecular oxygen coupling mechanism (IMOC) etc. Innovative research progress on the coexistence and transformation of multiple mechanisms is highlighted, and the intrinsic factors that influence these dynamic processes are summarized. Advanced characterization techniques and theoretical modeling are underscored as indispensable tools for revealing these complex interactions. This review provides guiding principles for mechanism-based catalyst design. Finally, in view of the multidimensional challenges currently faced by OER mechanisms, prospects for future research are given to bridge the gap between mechanism innovation and experimental verification and application. This comprehensive review provides valuable perspectives for advancing clean energy technologies and achieving sustainable development.

Key words: Oxygen evolution reaction, Catalytic mechanism, Catalyst design, Adsorption evolution mechanism, Lattice oxygen mechanism