催化学报 ›› 2025, Vol. 72: 24-47.DOI: 10.1016/S1872-2067(24)60257-3
李瀚a, 王往b,c, 许凯强d, 程蓓b,c, 许景三e, 曹少文b,c,*()
收稿日期:
2024-11-21
接受日期:
2025-01-11
出版日期:
2025-05-18
发布日期:
2025-05-20
通讯作者:
*电子信箱: swcao@whut.edu.cn (曹少文).
基金资助:
Han Lia, Wang Wangb,c, Kaiqiang Xud, Bei Chengb,c, Jingsan Xue, Shaowen Caob,c,*()
Received:
2024-11-21
Accepted:
2025-01-11
Online:
2025-05-18
Published:
2025-05-20
Contact:
*E-mail: swcao@whut.edu.cn (S. Cao).
About author:
Shaowen Cao (State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology) was appointed as the young member of the Editorial Board of Chinese Journal of Catalysis in 2017. Professor Shaowen Cao received his B.S. in Geochemistry in 2005 from the University of Science and Technology of China, and his Ph.D. in Materials Chemistry & Physics in 2010 from the Shanghai Institute of Ceramics, Chinese Academy of Sciences. He then worked as a Research Fellow at the School of Materials Science and Engineering, Nanyang Technological University until Feb. 2014. He is now a Professor at State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology. From Mar 2018 to Feb 2020, he was a Visiting Scientist at Max Planck Institute of Colloids and Interfaces. His current research interests include the design and fabrication of photocatalytic materials for energy and environmental applications. He is the author or co-author of more than 150 peer-reviewed scientific papers., with over 22000 citations, an H-index 70 and 26 ESI highly cited papers. He is also one of the “Highly Cited Researchers” from 2018 to 2024 awarded by Clarivate Analytics.
Supported by:
摘要:
过氧化氢(H2O2)作为一种重要和绿色的化学品, 被广泛应用于能源和环境领域. 然而, H2O2的制备主要依靠蒽醌法, 该方法能耗高,涉及多步反应, 并且会产生有害的副产物. 太阳能驱动的H2O2合成作为一种替代方法,是一种绿色和可持续的技术, 因为仅使用水和氧气作为原料. 然而, 载流子的快速复合以及氧化还原能力不足限制了光催化制H2O2的性能. 构建S型(S-scheme)异质结光催化剂被认为是一种有效的策略来解决这些问题, 因为它不仅能实现电荷载流子的空间分离, 还能保持光催化系统的最大的氧化还原能力. 用于制备H2O2的各种S型异质结光催化剂已被广泛报道, 因此, 有必要对S型异质结制备H2O2的最新研究进展进行总结.
本文系统总结了用于生产H2O2的S型异质结光催化剂的最新进展. 首先简要介绍了Ⅱ型异质结、传统Z型异质结、S型异质结的发展历程以及相应的载流子转移机理和区别. 然后阐明了S型异质结光催化剂的基本原则和表征技术, 如原位X射线光电子能谱、原位开尔文探针力显微镜、飞秒超快吸收光谱、电子顺磁共振波谱、密度泛函理论计算. 此外, 系统总结了用于生产H2O2的S型异质结光催化剂的制备策略, 包括原位界面生长法、自组装法、溶剂蒸发沉积法、共沉淀法, 并讨论了各种制备方法的优缺点. 重点讨论了光催化制备H2O2的机理, 包括氧还原反应路径、水氧化反应路径、双通道路径, 也简要介绍了光催化制备H2O2机理的表征方法. 同时, 重点阐述了S型异质结光催化剂制备H2O2的优势, 如增强的光吸收能力、优异的光激发载流子分离和转移能力、强氧化还原能力. 接下来, 总结和讨论了近期的S型异质结设计策略, 包括无机-无机S型异质结、无机-有机S型异质结、有机-有机S型异质结. 最后, 总结了S型异质结光催化剂制备H2O2所面临的挑战和未来的发展方向: (1)将S型异质结与其他改性策略相结合, 通过协同作用进一步提高光催化性能. (2)通过合理设计表面性质, 包括构建特定的活性位点和三相界面设计, 提高S型异质结对氧气和水的吸附能力. (3)构筑双功能活性位点, 进而通过双通道路径实现H2O2的全合成. (4)通过氧还原路径制备H2O2与有机合成反应相结合, 以充分利用光生电子和空穴, 实现绿色和可持续发展的目标. (5)利用原位表征技术和密度泛函理论计算进一步探究H2O2的生成机理. (6)原位生成的H2O2的分离和直接利用有待探索.
综上, 本文系统总结了S型异质结光催化剂制备H2O2的最新研究进展以及面临的挑战和未来的发展方向, 旨在为用于制备H2O2的S型异质结的设计提供一定的参考.
李瀚, 王往, 许凯强, 程蓓, 许景三, 曹少文. 太阳能驱动S型异质结光催化剂制备过氧化氢[J]. 催化学报, 2025, 72: 24-47.
Han Li, Wang Wang, Kaiqiang Xu, Bei Cheng, Jingsan Xu, Shaowen Cao. Solar-driven H2O2 production by S-scheme heterojunction photocatalyst[J]. Chinese Journal of Catalysis, 2025, 72: 24-47.
Fig. 1. The proposed charge migration routes for type-II (a), traditional Z-scheme (b), all-solid-state Z-scheme (c), and S-scheme (d) heterojunction.
Fig. 3. High-resolution XPS spectra of Zn 2p (a), Cd 3d (b), and C 1s (c). (d) Charge carriers migration mechanism of ZCS@DBTCN S-scheme heterojunction. Reprinted with permission [53]. Copyright 2023, Elsevier.
Fig. 4. (a) Illustration of in situ irradiated KPFM. (b) AFM image of TCN/ HCN. (c) The corresponding height distribution curve. Surface potential distributions of TCN/HCN observed in darkness (d) and under light irradiation (f). (e,g) The corresponding line-scanning in (d) and (f). (h) Schematic of S-scheme charge migration of TCN/HCN. Reprinted with permission [57]. Copyright 2023, Springer Nature.
Fig. 5. 2D mapping TA spectra of pure CdS (a) and CPDB5 (b). TA spectra of CdS (c,d) and CPDB5 (e,f). Reprinted with permission [67]. Copyright 2022, Wiley-VCH.
Fig. 6. TAS decay kinetics of pristine ZnSe QDs at 440 nm (a), COF at 480 nm (b), and ZnSe QDs/COF-10% composite at 550 nm (c). (d) Schematic diagram of the decay routes of photoexcited electrons in a ZnSe QDs/COF-10% S-scheme heterojunction. Reprinted with permission [68]. Copyright 2024, Elsevier.
Fig. 7. EPR spectra of DMPO-?O2? (a) and DMPO-?OH (b) of T, NCZS, and TNZCS40. (c) Schematic of charge migration mechanism of TNZCS heterojunction. Reprinted with permission [70]. Copyright 2023, Wiley-VCH.
Fig. 8. (a) The charge density difference of COF/QDs heterojunction. (b) Schematic of the formation of an internal electric field. Reprinted with permission [74]. Copyright 2024, American Chemical Society.
Fig. 9. (a) Schematic diagram of the synthesis process for the CdS/PT composite. Reprinted with permission [96]. Copyright 2021, Wiley-VCH. (b) Schematic diagram of the synthesis process of MIL-125-NH2@CoFe PBA. Reprinted with permission [97]. Copyright 2023, Wiley-VCH. (c) Illustration of the synthesis process of CeO2/PCN. Reprinted with permission [100]. Copyright 2020, Wiley-VCH. (d) Schematic illustration of the synthetic route of MOF-902@CTF-Th. Reprinted with permission [103]. Copyright 2023, Wiley-VCH.
Fig. 10. (a) Schematic illustration of synthesis process of WO3/g-C3N4. Reprinted with permission [40]. Copyright 2019, Elsevier. (b) Illustration of the synthesis process of PDI-Ala/S-C3N4. Reprinted with permission [111]. Copyright 2021, Editorial Office of Acta Physico-Chimica Sinica. (c) Synthesis diagram of Ni@MOF/BiVO4 heterojunction photocatalyst. Reprinted with permission [112]. Copyright 2022, Wiley-VCH.
Fig. 11. (a) Schematic of the synthesis process of POSS-PDI, p-CN, and p-CN/P-PDI composite. Reprinted with permission [114]. Copyright 2023, Wiley-VCH. (b) Synthetic process of n-CIS, n-CIS/o-CIS and o-CIS. Reprinted with permission [116]. Copyright 2024, Wiley-VCH.
Fig. 12. (a) Reaction pathways for photocatalytic H2O2 generation via the ORR and WOR. (b) The redox potentials for the H2O2 production via the ORR or WOR route.
Fig. 13. (a) Schematic illustration of MBTz via electrostatic attraction method. (b) Band structure of MCS and BTz. (c) Mechanism of photocatalytic H2O2 generation over MBTz20. Reprinted with permission [127]. Copyright 2023, Springer Nature.
Fig. 14. (a) The TA spectrum of TO. (b) The TA spectrum of TBO40. (c) Corresponding fitted TA kinetics of TO-AgNO3 and TBO40 at 395 nm. (d) Schematic diagram of the photoredox reaction in the three-phase system. (e) Photocatalytic H2O2 production activity of the as-obtained samples. Reprinted with permission [130]. Copyright 2022, Wiley-VCH.
Fig. 15. (a) EPR spectra for DMPO-?O2? of the different samples. (b) EPR spectra for DMPO-?OH of the samples. (c) EPR spectra for TEMP-1O2 of the samples. (d) EPR spectra for 1O2 with ?O2? trapping agent (1mM p-BQ) or h+ trapping agent (1mM AO). (e) Photocatalytic H2O2 evolution rate with different trapping agent over ZB-10. (f) Mechanism of photocatalytic H2O2 generation by ZB-10. Reprinted with permission [124]. Copyright 2023, Elsevier.
Photocatalyst | Reactant medium | Irradiation (nm) | H2O2 yield (μmol g-1 h-1) and durability | Apparent quantum efficiency | Pathway | Ref. |
---|---|---|---|---|---|---|
BP/BiOBr | water | 300 W, Xe lamp 420‒780 | 97.2, N/A | N/A | sequential 1e− ORR | [ |
Bi2S3 @CdS@RGO | O2-saturated IPA aqueous solution (10 vol%) | 300 W, Xe lamp 420‒800 | 70.94, N/A | N/A | sequential 1e− ORR | [ |
ZnO/WO3 | O2-saturated EtOH aqueous solution (10 vol%) | 300 W, Xe lamp | 6788.0, imperceptible decrease after 4 h for 4 cycles | 12.5% 365 nm | direct 2e− and sequential 1e− ORR | [ |
TiO2/Bi2O3 | O2-saturated FFA aqueous solution (25 μL/50 mL) | 300 W, Xe lamp 350‒780 | 2875.0, N/A | 1.25% 365 nm | sequential 1e− ORR | [ |
HT-In2O3/ ZnIn2S4 | O2-saturated EtOH aqueous solution (5 vol%) | 250W, Xe lamp ≥420 | 5716.0, sustained after 4 cycles | N/A | sequential 1e− ORR | [ |
CdxZn1−xS/ Ni4POM | O2-saturated aqueous solution | LED, 420 | 738.5, maintained over 5 h for 5 cycles | 32.27% 420 nm | sequential 1e− ORR | [ |
TiO2/In2S3 | O2-saturated EtOH (10 vol%) | 300 W, Xe lamp | 752.0, slight decrease after 4 h for 4 cycles | 3.42% 365 nm | sequential 1e− ORR | [ |
Bi/BiOBr-CdS | water | 300 W Xe lamp >420 | 346.4, slight decrease after 9 h for 3 cycles | N/A | sequential 1e− ORR and WOR | [ |
TiO2 NT/ZnIn2S4 | O2-saturated 2Pr-OH (10 vol%) | Xe lamp simulated sunlight | 39120.0, no obvious change after 3 cycles | N/A | sequential 1e− ORR | [ |
CdS/K2Ta2O6 | ultra-pure water | 300 W Xe lamp >420 | 160.89, slight decrease after 5 h for 5 cycles | N/A | sequential 1e− ORR and WOR, 4e− WOR | [ |
BiOI/ β-Bi2O3 | HCOOH aqueous solution (5 vol%) | 300 W Xe lamp >420 | 2.7, N/A | N/A | sequential 1e− ORR | [ |
ZnIn2S4@ BiVO4 | ultra-pure water | 300 W Xe lamp | 1800.0, retained after 4 h for 4 cycles | 5.18% 420 nm | sequential 1e− ORR and WOR, sequential electrons and holes transfer | [ |
ZnIn2S4@ZnO | O2-saturated methanol aqueous solution (10 vol%) | 300 W Xe lamp | 928.0, retained for 4h for 4 cycles | 5.78% 365 nm | sequential 1e− ORR | [ |
NiFe-P-8/ GDY-X | pure water | 300W, Xe lamp ≥420 | 674.0, N/A | N/A | sequential 1e− ORR, 4e− WOR | [ |
WO3/NiS | ultra-pure water | 300 W, Xe lamp 420‒780 | 2590.0, negligible decrease after 12 h for 6 cycles | 4.97% 420 nm | sequential 1e− ORR | [ |
MnOOH/ BiVO4/Cu2O | O2-saturated water | 420 nm LED light | 112.0, slight decrease after 5 h for 5 cycles | N/A | sequential 1e− ORR | [ |
Nb2O5@NiS | uultra-pure water | 300 W, Xe lamp AM 1.5G | 240.0, retained for 20 h for 10 cycles | N/A | sequential 1e− ORR and WOR, sequential electrons and holes transfer | [ |
CuFe2O4/ ZnIn2S4 | O2-saturated EtOH aqueous solution (52.6 vol%) | 350 W Xe lamp >420 | 2545.4, maintained for 5 h for 5 cycles | 8.1 % 400 nm | direct 2e− ORR | [ |
Cs3PMo12/ carbonized cellulose | O2-saturated ultrapure water | 300 W LED lamp | 1005.0, slight change after 8 cycles | 2.1 % 420 nm | sequential 1e− ORR and WOR, direct 2e− WOR, 4e− WOR | [ |
BiOCl/ Bi2O2CO3 | O2-saturated HCOOH aqueous solution (10 vol%) | 300 W, Xe lamp simulated sunlight | 2562.95, retained for 3 cycles | N/A | sequential 1e− ORR and WOR | [ |
SnO2/ Zn3In2S6 | seawater | 300 W Xe lamp | 2610.0, maintained for 90 days (6 days, 23 days, 60 days intervals) | N/A | sequential 1e− ORR and WOR, sequential electrons and holes transfer | [ |
Bi3TiNbO9/ Bi2S3 | air-saturated pure water | 300 W, Xe lamp AM 1.5G | 810(2).0, no obvious decrease after 13 h for 13 cycles | N/A | sequential 1e− ORR and WOR | [ |
Bi2MoO6/ InVO4/CeVO4 | O2-saturated EtOH aqueous solution (5 vol%) | 150 W, Xe lamp ≥420 | 85.0, retained for 4 cycles | N/A | sequential 1e− ORR | [ |
CdS/Bi2WO6 | O2-saturated benzyl alcohol aqueous solution (50 vol%) | 300 W, Xe lamp simulated sunlight | 216760.0, almost unchanged after 20 h for 5 cycles | N/A | sequential 1e− ORR and WOR | [ |
ZnO/ZnIn2S4 | pure water | 300 W, LED >380 | 897.6, slight decrease after 5 h for 5 cycles | 16.6% 400 nm | sequential 1e− ORR | [ |
Table 1 Inorganic-inorganic S-scheme heterojunction photocatalysts for H2O2 production.
Photocatalyst | Reactant medium | Irradiation (nm) | H2O2 yield (μmol g-1 h-1) and durability | Apparent quantum efficiency | Pathway | Ref. |
---|---|---|---|---|---|---|
BP/BiOBr | water | 300 W, Xe lamp 420‒780 | 97.2, N/A | N/A | sequential 1e− ORR | [ |
Bi2S3 @CdS@RGO | O2-saturated IPA aqueous solution (10 vol%) | 300 W, Xe lamp 420‒800 | 70.94, N/A | N/A | sequential 1e− ORR | [ |
ZnO/WO3 | O2-saturated EtOH aqueous solution (10 vol%) | 300 W, Xe lamp | 6788.0, imperceptible decrease after 4 h for 4 cycles | 12.5% 365 nm | direct 2e− and sequential 1e− ORR | [ |
TiO2/Bi2O3 | O2-saturated FFA aqueous solution (25 μL/50 mL) | 300 W, Xe lamp 350‒780 | 2875.0, N/A | 1.25% 365 nm | sequential 1e− ORR | [ |
HT-In2O3/ ZnIn2S4 | O2-saturated EtOH aqueous solution (5 vol%) | 250W, Xe lamp ≥420 | 5716.0, sustained after 4 cycles | N/A | sequential 1e− ORR | [ |
CdxZn1−xS/ Ni4POM | O2-saturated aqueous solution | LED, 420 | 738.5, maintained over 5 h for 5 cycles | 32.27% 420 nm | sequential 1e− ORR | [ |
TiO2/In2S3 | O2-saturated EtOH (10 vol%) | 300 W, Xe lamp | 752.0, slight decrease after 4 h for 4 cycles | 3.42% 365 nm | sequential 1e− ORR | [ |
Bi/BiOBr-CdS | water | 300 W Xe lamp >420 | 346.4, slight decrease after 9 h for 3 cycles | N/A | sequential 1e− ORR and WOR | [ |
TiO2 NT/ZnIn2S4 | O2-saturated 2Pr-OH (10 vol%) | Xe lamp simulated sunlight | 39120.0, no obvious change after 3 cycles | N/A | sequential 1e− ORR | [ |
CdS/K2Ta2O6 | ultra-pure water | 300 W Xe lamp >420 | 160.89, slight decrease after 5 h for 5 cycles | N/A | sequential 1e− ORR and WOR, 4e− WOR | [ |
BiOI/ β-Bi2O3 | HCOOH aqueous solution (5 vol%) | 300 W Xe lamp >420 | 2.7, N/A | N/A | sequential 1e− ORR | [ |
ZnIn2S4@ BiVO4 | ultra-pure water | 300 W Xe lamp | 1800.0, retained after 4 h for 4 cycles | 5.18% 420 nm | sequential 1e− ORR and WOR, sequential electrons and holes transfer | [ |
ZnIn2S4@ZnO | O2-saturated methanol aqueous solution (10 vol%) | 300 W Xe lamp | 928.0, retained for 4h for 4 cycles | 5.78% 365 nm | sequential 1e− ORR | [ |
NiFe-P-8/ GDY-X | pure water | 300W, Xe lamp ≥420 | 674.0, N/A | N/A | sequential 1e− ORR, 4e− WOR | [ |
WO3/NiS | ultra-pure water | 300 W, Xe lamp 420‒780 | 2590.0, negligible decrease after 12 h for 6 cycles | 4.97% 420 nm | sequential 1e− ORR | [ |
MnOOH/ BiVO4/Cu2O | O2-saturated water | 420 nm LED light | 112.0, slight decrease after 5 h for 5 cycles | N/A | sequential 1e− ORR | [ |
Nb2O5@NiS | uultra-pure water | 300 W, Xe lamp AM 1.5G | 240.0, retained for 20 h for 10 cycles | N/A | sequential 1e− ORR and WOR, sequential electrons and holes transfer | [ |
CuFe2O4/ ZnIn2S4 | O2-saturated EtOH aqueous solution (52.6 vol%) | 350 W Xe lamp >420 | 2545.4, maintained for 5 h for 5 cycles | 8.1 % 400 nm | direct 2e− ORR | [ |
Cs3PMo12/ carbonized cellulose | O2-saturated ultrapure water | 300 W LED lamp | 1005.0, slight change after 8 cycles | 2.1 % 420 nm | sequential 1e− ORR and WOR, direct 2e− WOR, 4e− WOR | [ |
BiOCl/ Bi2O2CO3 | O2-saturated HCOOH aqueous solution (10 vol%) | 300 W, Xe lamp simulated sunlight | 2562.95, retained for 3 cycles | N/A | sequential 1e− ORR and WOR | [ |
SnO2/ Zn3In2S6 | seawater | 300 W Xe lamp | 2610.0, maintained for 90 days (6 days, 23 days, 60 days intervals) | N/A | sequential 1e− ORR and WOR, sequential electrons and holes transfer | [ |
Bi3TiNbO9/ Bi2S3 | air-saturated pure water | 300 W, Xe lamp AM 1.5G | 810(2).0, no obvious decrease after 13 h for 13 cycles | N/A | sequential 1e− ORR and WOR | [ |
Bi2MoO6/ InVO4/CeVO4 | O2-saturated EtOH aqueous solution (5 vol%) | 150 W, Xe lamp ≥420 | 85.0, retained for 4 cycles | N/A | sequential 1e− ORR | [ |
CdS/Bi2WO6 | O2-saturated benzyl alcohol aqueous solution (50 vol%) | 300 W, Xe lamp simulated sunlight | 216760.0, almost unchanged after 20 h for 5 cycles | N/A | sequential 1e− ORR and WOR | [ |
ZnO/ZnIn2S4 | pure water | 300 W, LED >380 | 897.6, slight decrease after 5 h for 5 cycles | 16.6% 400 nm | sequential 1e− ORR | [ |
Fig. 16. (a) TEM image of SCN/T. (b) In situ DRIFTS spectra of photocatalytic H2O2 generation over SCN/T9. Reprinted with permission [155]. Copyright 2023, Elsevier. (c) Schematic diagram of the preparation of CdS/RF. (d) UV-vis DRS of theas-prepared samples. (e) Photocatalytic H2O2 generation activity of different samples. Reprinted with permission [156]. Copyright 2023, Elsevier. (f) Schematic diagram of the synthesis process of TiO2@BTTA. Reprinted with permission [157]. Copyright 2023, Elsevier.
Fig. 17. (a) Schematic diagram of the synthesis of K+/I?-CN/CdSe-D. (b) HRTEM image of 40%K+/I?-CN/CdSe-D. (c) k3-weighted FT-EXAFS of Se foil, SeO2 and 40%K+/I?-CN/CdSe-D. (d) FT-EXAFS R space and k space (inset) fitting curves of 40%K+/I?-CN/CdSe-D. (e) H2O2 generation activity of the samples. Reprinted with permission [158]. Copyright 2024, Wiley-VCH.
Fig. 18. (a) EPR spectra of DMPO-?O2? for the as-prepared samples. (b) EPR spectra of TEMP-1O2 for the as-prepared samples. (c) EPR spectra of DMPO-?OH for different samples. (d) Photocatalytic H2O2 generation rate in the presence of different trapping agents over 20COFIS. (e) Schematic illustration of the pathway for the H2O2 production by 20COFIS. Reprinted with permission [159]. Copyright 2024, Wiley-VCH.
Photocatalysts | Reactant medium | Irradiation (nm) | H2O2 yield (μmol g-1 h-1) and durability | Apparent quantum efficiency | Pathway | Ref. |
---|---|---|---|---|---|---|
S-pCN/WO2.72 | distilled water | 300 W Xe lamp 420-780 | 29.0, N/A | 1.5% 420 nm | N/A | [ |
Pt/g-C3N4/ BiOBr | deionized water | 300 W Xe lamp >400 | 225.0, N/A | N/A | sequential 1e− WOR | [ |
ZnO/g‑C3N4 | O2-saturated EtOH aqueous solution (10 vol%) | 300 W Xe lamp >350 | 3860.0, slight decrease after 4 h for 4 cycles | N/A | sequential 1e− ORR | [ |
ZnO@ Polydopamine | O2-saturated glycol aqueous solution (4 vol%) | 300 W Xe lamp >420 | 2528.5, maintained after 4 h for 4 cycles | 13.96% 365 nm | sequential 1e− ORR | [ |
PDI-Urea/BiOBr | TC (50 mg/L) and OFLO (10 mg/L) aqueous solution | 300 W Xe lamp 420‒780 | 23.7, N/A | N/A | sequential 1e− ORR | [ |
ZnO/COF | O2-saturated EtOH aqueous solution (10 vol%) | 300 W Xe lamp AM 1.5G | 2443.0, retained for 4 h for 4 cycles | 13.12% 365 nm | sequential 1e− ORR | [ |
TiO2/ polydopamine | O2-saturated EtOH aqueous solution (10 vol%) | 300 W Xe lamp | 2120.0, N/A | N/A | N/A | [ |
Sv-ZIS/CN | O2-saturated IPA aqueous solution (10 vol%) | 300W Xe lamp ≥420 | 1637.7, N/A | N/A | sequential 1e− ORR | [ |
Fe2O3/B-g-C3N4 | O2-saturated IPA aqueous solution (5 vol%) | 250 W Hg light ≥420 | 729.0, no obvious change after 4 h for 4 cycles | N/A | sequential 1e− ORR, direct 2e− ORR | [ |
BiOBr/ZIF-8/ZnO | O2-saturated HCOOH aqueous solution (10 vol%) | LED 7 W | 2900.0, slight decrease after 8 h for 4 cycles | N/A | direct 2e− ORR | [ |
CuInS2/PCN | O2-saturated IPA aqueous solution (5 vol%) | LED 400‒800 | 3119.0, stable for 20 h | 16.0% 420 nm | sequential 1e− ORR | [ |
TiO2@RF | O2-saturated deionized water | 300 W Xe lamp AM 1.5G | 999.0, slight decrease after 4 cycles | N/A | sequential 1e− ORR | [ |
PCN/MnS | deionized water | 300 W Xe lamp >420 | 133.9, retained for 5 h for 5 cycles | 8.5% 450 nm | sequential 1e− ORR, and direct 2e− ORR | [ |
NH2-MIL-125-Ti/WO3-x | water | 300 W Xe lamp | 8.41, N/A | N/A | WOR | [ |
TiO2/COF | O2-saturated furfuryl alcohol solution (2 mM) | 300 W Xe lamp 350‒780 | 1480.0, no significant decrease after 24 h for 4 cycles | 5.48% 365 nm | sequential 1e− ORR | [ |
g‑C3N4/Cu2O−Pd | deionized water | 500 W Xe lamp >400 | 16992.5, retained for 8 h for 4 cycles | 3.3% 420 nm | WOR | [ |
Sulfur-doped CN/TiO2 | O2-saturated deionized water | 300 W Xe lamp | 2128.0, slight decrease after 4 cycles | 0.61% 365 nm | direct 2e− ORR and WOR, sequential 1e− ORR | [ |
UiO-66(−NH2)/ CuInS2 | O2-saturated EtOH aqueous solution (5 vol%) | 250 W Xe lamp ≥420 | 4073.0, retained for 4 cycles | N/A | sequential 1e− ORR | [ |
CdS/RF | O2-saturated EtOH aqueous solution (10 vol%) | 300 W Xe lamp >420 | 2136.0, slight decrease after 4 h for 4 cycles | N/A | direct 2e− and sequential 1e− ORR | [ |
CNQDs/BiOBr | water | 300 W Xe lamp | 28.8, N/A | N/A | sequential 1e− ORR | [ |
BiOBr/COF | O2-saturated EtOH aqueous solution (10 vol%) | 300 W Xe lamp | 3749.0, slight decrease after 4 h for 4 cycles | N/A | direct 2e− ORR | [ |
CdS/TpBpy | deionized water | 300 W Xe lamp >420 | 3600.0, slight decrease after 5 h for 5 cycles | 13.4% 380 nm | sequential 1e− ORR and WOR, direct 2e− ORR | [ |
CdS/TpMA | ultrapure water | 300 W Xe lamp >420 | 1014.0, maintained for 6 h for 4 cycles | N/A | sequential 1e− ORR, 4e− WOR | [ |
Mo-WO3/In-CN | O2-saturated IPA aqueous solution (10 vol%) | 300 W Xe lamp >420 | 3082.9, maintained for 8 h for 4 cycles | 1.20% 400 nm | sequential 1e− ORR and WOR | [ |
WO3/CN | deionized water | 300 W Xe lamp | 57.4, retained for 4 cycles | N/A | sequential 1e− ORR and WOR | [ |
g-C3N4/HMoP | O2-saturated EtOH aqueous solution (5 vol%) | 300 W Xe lamp >420 | 226.2, retained for 20 h for 4 cycles | N/A | sequential 1e− ORR and WOR | [ |
MCN/CdS | O2-saturated EtOH aqueous solution (10 vol%) | 300 W Xe lamp >420 | 1781.3, no significant decrease after 6.6 h for 5 cycles | N/A | sequential 1e− ORR | [ |
COF/In2S3 | water | 300 W Xe lamp >420 | 691.3, retained for 6 h for 4 cycles | N/A | sequential 1e− ORR, 4e− WOR | [ |
K+/I−-CN/ CdSe-D | O2-saturated deionized water | 300 W Xe lamp | 2240.2, maintained after 4 h for 4 cycles | N/A | sequential 1e− ORR | [ |
ZnIn2S4/PDA | O2-saturated pure water | 300 W Xe lamp >420 | 1747.0, certain decrease after 4 h for 4 cycles | N/A | direct 2e− ORR | [ |
BTz@ Mn0.2Cd0.8S | ultra-pure water | 300 W Xe lamp | 5368.0, maintained after 4 h for 4 cycles | 4.5% 420 nm | direct 2e− ORR and 4e− WOR | [ |
NiO/C3N5 | air-saturated IPA aqueous solution (10 vol%) | 300 W Xe lamp ≥420 | 456.0, slight decrease after 25 h for 5 cycles | N/A | sequential 1e− ORR | [ |
TiO2-x/g-C3N4 | O2-saturated IPA aqueous solution (10 vol%) | 5 W LED light ≥365 | 3560.6, slight decrease after 15 h for 5 cycles | N/A | sequential 1e− ORR | [ |
4Cl-H2PDI/GQD | O2-saturated IPA aqueous solution (10 vol%) | 300 W Xe lamp >420 | 248.4, slight decrease after 4 h for 4 cycles | 0.75% 520 nm | sequential 1e− ORR | [ |
In2S3/g-C3N5 | O2-saturated anhydrous ethanol aqueous solution (10 vol%) | 300 W Xe lamp >420 | 4862.5, no significant decrease after 6 h for 3 cycles | N/A | sequential 1e− ORR | [ |
COF/In2S3 | deionized water | 360 W Xe lamp | 5713.2, retained after 4 h for 4 cycles | 0.55 % 420 nm | sequential 1e− ORR, sequential electrons and holes transfer, direct 2e− WOR | [ |
NH2-MIL-88B (Fe)/CuInS2 | deionized water | 500 W Xe lamp >420 | 316.1, retained for 5 cycles (4 h per cycle) | N/A | sequential 1e− ORR | [ |
ZnSe QD/COF | O2-saturated EtOH aqueous solution (10 vol%) | 300 W Xe lamp | 1895.0, retained after 5 cycles | 3.81% 420 nm | sequential 1e− ORR | [ |
C-MoO2/C3N4 | O2-saturated lactic acid aqueous solution (10 vol%) | 300 W Xe lamp >420 | 877.8, retained after 3 h for 3 cycles | 0.58% 420 nm | N/A | [ |
RF/Zn3In2S6 | air-saturated deionized water | 300 W Xe lamp | 3174.34, retained after 4 cycles | 0.95% 420 nm | sequential 1e− ORR, sequential electrons and holes transfer, and direct 2e− WOR | [ |
TpPa-1/BiVO4 | O2-saturated ultra-pure water | 300 W Xe lamp >420 | 723.0, slight decrease after 10 h for 5 cycles | 7.2 % 420 nm | sequential 1e− ORR and 4e− WOR | [ |
CN/BiOBr | air-saturated methanol aqueous solution (10 vol%) | LED lamp 420 | 1810.0, slight decrease after 5 cycles | N/A | sequential 1e− ORR and WOR, sequential electrons and holes transfer, direct 2e− WOR | [ |
Bi4O5Br2/COF | water | white LED 400-700 | 5221.0, certain decrease after 5 h for 5 cycles | N/A | sequential 1e− ORR, sequential electrons and holes transfer, and direct 2e− WOR | [ |
K-dopedg-C3N4/ZnO | O2-saturated anhydrous ethanol solution (10 vol%) | 300 W Xe lamp AM 1.5G | 7866.7, slight decrease after 6 h for 4 cycles | N/A | Sequential 1e− ORR | [ |
WS2/sulfur-doped g-C3N4 | O2-saturated IPA aqueous solution (5 vol%) | 250 W Hg lamp >400 | 817.0, retained after 5 h for 5 cycles | 3.19% 420 nm | sequential 1e− ORR and WOR, direct 2e− ORR | [ |
In2.77S4/K+‐doped g‐C3N4 | air-saturated distilled water | 300 W Xe lamp 400-780 nm | 1360.0, slight decrease after 4 cycles | N/A | sequential 1e− ORR and 4e− WOR | [ |
Zn3In2S6/Bi-MOF | O2-saturated water | 300 W Xe lamp simulated sunlight | 3689.94, retained after 4 cycles | N/A | sequential 1e−, and sequential electrons and holes transfer | [ |
ZnCdS QDs/TT-COF | O2-saturated deionized water | 300 W Xe lamp ≥420 | 5171.0, slight decrease after 6 cycles (1 h per cycle) | 0.44% 420 nm | sequential 1e− ORR, direct 2e− WOR | [ |
ZnO/PBD | O2-saturated methanol aqueous solution (10 vol%) | 300 W Xe lamp ≥ 360 | 4070.1, slight decrease after 4 cycles (1 h per cycle) | 7.54% 420 nm | sequential 1e− ORR | [ |
Table 2 Inorganic-organic S-scheme heterojunction photocatalysts for H2O2 production.
Photocatalysts | Reactant medium | Irradiation (nm) | H2O2 yield (μmol g-1 h-1) and durability | Apparent quantum efficiency | Pathway | Ref. |
---|---|---|---|---|---|---|
S-pCN/WO2.72 | distilled water | 300 W Xe lamp 420-780 | 29.0, N/A | 1.5% 420 nm | N/A | [ |
Pt/g-C3N4/ BiOBr | deionized water | 300 W Xe lamp >400 | 225.0, N/A | N/A | sequential 1e− WOR | [ |
ZnO/g‑C3N4 | O2-saturated EtOH aqueous solution (10 vol%) | 300 W Xe lamp >350 | 3860.0, slight decrease after 4 h for 4 cycles | N/A | sequential 1e− ORR | [ |
ZnO@ Polydopamine | O2-saturated glycol aqueous solution (4 vol%) | 300 W Xe lamp >420 | 2528.5, maintained after 4 h for 4 cycles | 13.96% 365 nm | sequential 1e− ORR | [ |
PDI-Urea/BiOBr | TC (50 mg/L) and OFLO (10 mg/L) aqueous solution | 300 W Xe lamp 420‒780 | 23.7, N/A | N/A | sequential 1e− ORR | [ |
ZnO/COF | O2-saturated EtOH aqueous solution (10 vol%) | 300 W Xe lamp AM 1.5G | 2443.0, retained for 4 h for 4 cycles | 13.12% 365 nm | sequential 1e− ORR | [ |
TiO2/ polydopamine | O2-saturated EtOH aqueous solution (10 vol%) | 300 W Xe lamp | 2120.0, N/A | N/A | N/A | [ |
Sv-ZIS/CN | O2-saturated IPA aqueous solution (10 vol%) | 300W Xe lamp ≥420 | 1637.7, N/A | N/A | sequential 1e− ORR | [ |
Fe2O3/B-g-C3N4 | O2-saturated IPA aqueous solution (5 vol%) | 250 W Hg light ≥420 | 729.0, no obvious change after 4 h for 4 cycles | N/A | sequential 1e− ORR, direct 2e− ORR | [ |
BiOBr/ZIF-8/ZnO | O2-saturated HCOOH aqueous solution (10 vol%) | LED 7 W | 2900.0, slight decrease after 8 h for 4 cycles | N/A | direct 2e− ORR | [ |
CuInS2/PCN | O2-saturated IPA aqueous solution (5 vol%) | LED 400‒800 | 3119.0, stable for 20 h | 16.0% 420 nm | sequential 1e− ORR | [ |
TiO2@RF | O2-saturated deionized water | 300 W Xe lamp AM 1.5G | 999.0, slight decrease after 4 cycles | N/A | sequential 1e− ORR | [ |
PCN/MnS | deionized water | 300 W Xe lamp >420 | 133.9, retained for 5 h for 5 cycles | 8.5% 450 nm | sequential 1e− ORR, and direct 2e− ORR | [ |
NH2-MIL-125-Ti/WO3-x | water | 300 W Xe lamp | 8.41, N/A | N/A | WOR | [ |
TiO2/COF | O2-saturated furfuryl alcohol solution (2 mM) | 300 W Xe lamp 350‒780 | 1480.0, no significant decrease after 24 h for 4 cycles | 5.48% 365 nm | sequential 1e− ORR | [ |
g‑C3N4/Cu2O−Pd | deionized water | 500 W Xe lamp >400 | 16992.5, retained for 8 h for 4 cycles | 3.3% 420 nm | WOR | [ |
Sulfur-doped CN/TiO2 | O2-saturated deionized water | 300 W Xe lamp | 2128.0, slight decrease after 4 cycles | 0.61% 365 nm | direct 2e− ORR and WOR, sequential 1e− ORR | [ |
UiO-66(−NH2)/ CuInS2 | O2-saturated EtOH aqueous solution (5 vol%) | 250 W Xe lamp ≥420 | 4073.0, retained for 4 cycles | N/A | sequential 1e− ORR | [ |
CdS/RF | O2-saturated EtOH aqueous solution (10 vol%) | 300 W Xe lamp >420 | 2136.0, slight decrease after 4 h for 4 cycles | N/A | direct 2e− and sequential 1e− ORR | [ |
CNQDs/BiOBr | water | 300 W Xe lamp | 28.8, N/A | N/A | sequential 1e− ORR | [ |
BiOBr/COF | O2-saturated EtOH aqueous solution (10 vol%) | 300 W Xe lamp | 3749.0, slight decrease after 4 h for 4 cycles | N/A | direct 2e− ORR | [ |
CdS/TpBpy | deionized water | 300 W Xe lamp >420 | 3600.0, slight decrease after 5 h for 5 cycles | 13.4% 380 nm | sequential 1e− ORR and WOR, direct 2e− ORR | [ |
CdS/TpMA | ultrapure water | 300 W Xe lamp >420 | 1014.0, maintained for 6 h for 4 cycles | N/A | sequential 1e− ORR, 4e− WOR | [ |
Mo-WO3/In-CN | O2-saturated IPA aqueous solution (10 vol%) | 300 W Xe lamp >420 | 3082.9, maintained for 8 h for 4 cycles | 1.20% 400 nm | sequential 1e− ORR and WOR | [ |
WO3/CN | deionized water | 300 W Xe lamp | 57.4, retained for 4 cycles | N/A | sequential 1e− ORR and WOR | [ |
g-C3N4/HMoP | O2-saturated EtOH aqueous solution (5 vol%) | 300 W Xe lamp >420 | 226.2, retained for 20 h for 4 cycles | N/A | sequential 1e− ORR and WOR | [ |
MCN/CdS | O2-saturated EtOH aqueous solution (10 vol%) | 300 W Xe lamp >420 | 1781.3, no significant decrease after 6.6 h for 5 cycles | N/A | sequential 1e− ORR | [ |
COF/In2S3 | water | 300 W Xe lamp >420 | 691.3, retained for 6 h for 4 cycles | N/A | sequential 1e− ORR, 4e− WOR | [ |
K+/I−-CN/ CdSe-D | O2-saturated deionized water | 300 W Xe lamp | 2240.2, maintained after 4 h for 4 cycles | N/A | sequential 1e− ORR | [ |
ZnIn2S4/PDA | O2-saturated pure water | 300 W Xe lamp >420 | 1747.0, certain decrease after 4 h for 4 cycles | N/A | direct 2e− ORR | [ |
BTz@ Mn0.2Cd0.8S | ultra-pure water | 300 W Xe lamp | 5368.0, maintained after 4 h for 4 cycles | 4.5% 420 nm | direct 2e− ORR and 4e− WOR | [ |
NiO/C3N5 | air-saturated IPA aqueous solution (10 vol%) | 300 W Xe lamp ≥420 | 456.0, slight decrease after 25 h for 5 cycles | N/A | sequential 1e− ORR | [ |
TiO2-x/g-C3N4 | O2-saturated IPA aqueous solution (10 vol%) | 5 W LED light ≥365 | 3560.6, slight decrease after 15 h for 5 cycles | N/A | sequential 1e− ORR | [ |
4Cl-H2PDI/GQD | O2-saturated IPA aqueous solution (10 vol%) | 300 W Xe lamp >420 | 248.4, slight decrease after 4 h for 4 cycles | 0.75% 520 nm | sequential 1e− ORR | [ |
In2S3/g-C3N5 | O2-saturated anhydrous ethanol aqueous solution (10 vol%) | 300 W Xe lamp >420 | 4862.5, no significant decrease after 6 h for 3 cycles | N/A | sequential 1e− ORR | [ |
COF/In2S3 | deionized water | 360 W Xe lamp | 5713.2, retained after 4 h for 4 cycles | 0.55 % 420 nm | sequential 1e− ORR, sequential electrons and holes transfer, direct 2e− WOR | [ |
NH2-MIL-88B (Fe)/CuInS2 | deionized water | 500 W Xe lamp >420 | 316.1, retained for 5 cycles (4 h per cycle) | N/A | sequential 1e− ORR | [ |
ZnSe QD/COF | O2-saturated EtOH aqueous solution (10 vol%) | 300 W Xe lamp | 1895.0, retained after 5 cycles | 3.81% 420 nm | sequential 1e− ORR | [ |
C-MoO2/C3N4 | O2-saturated lactic acid aqueous solution (10 vol%) | 300 W Xe lamp >420 | 877.8, retained after 3 h for 3 cycles | 0.58% 420 nm | N/A | [ |
RF/Zn3In2S6 | air-saturated deionized water | 300 W Xe lamp | 3174.34, retained after 4 cycles | 0.95% 420 nm | sequential 1e− ORR, sequential electrons and holes transfer, and direct 2e− WOR | [ |
TpPa-1/BiVO4 | O2-saturated ultra-pure water | 300 W Xe lamp >420 | 723.0, slight decrease after 10 h for 5 cycles | 7.2 % 420 nm | sequential 1e− ORR and 4e− WOR | [ |
CN/BiOBr | air-saturated methanol aqueous solution (10 vol%) | LED lamp 420 | 1810.0, slight decrease after 5 cycles | N/A | sequential 1e− ORR and WOR, sequential electrons and holes transfer, direct 2e− WOR | [ |
Bi4O5Br2/COF | water | white LED 400-700 | 5221.0, certain decrease after 5 h for 5 cycles | N/A | sequential 1e− ORR, sequential electrons and holes transfer, and direct 2e− WOR | [ |
K-dopedg-C3N4/ZnO | O2-saturated anhydrous ethanol solution (10 vol%) | 300 W Xe lamp AM 1.5G | 7866.7, slight decrease after 6 h for 4 cycles | N/A | Sequential 1e− ORR | [ |
WS2/sulfur-doped g-C3N4 | O2-saturated IPA aqueous solution (5 vol%) | 250 W Hg lamp >400 | 817.0, retained after 5 h for 5 cycles | 3.19% 420 nm | sequential 1e− ORR and WOR, direct 2e− ORR | [ |
In2.77S4/K+‐doped g‐C3N4 | air-saturated distilled water | 300 W Xe lamp 400-780 nm | 1360.0, slight decrease after 4 cycles | N/A | sequential 1e− ORR and 4e− WOR | [ |
Zn3In2S6/Bi-MOF | O2-saturated water | 300 W Xe lamp simulated sunlight | 3689.94, retained after 4 cycles | N/A | sequential 1e−, and sequential electrons and holes transfer | [ |
ZnCdS QDs/TT-COF | O2-saturated deionized water | 300 W Xe lamp ≥420 | 5171.0, slight decrease after 6 cycles (1 h per cycle) | 0.44% 420 nm | sequential 1e− ORR, direct 2e− WOR | [ |
ZnO/PBD | O2-saturated methanol aqueous solution (10 vol%) | 300 W Xe lamp ≥ 360 | 4070.1, slight decrease after 4 cycles (1 h per cycle) | 7.54% 420 nm | sequential 1e− ORR | [ |
Fig. 19. (a) FT-IR spectra of pure CN, Zn-TCPP, Zn-TCPP/CN2 and Zn-TCPP/CN4. (b) Photocatalytic H2O2 generation rate of Zn-TCPP/CN2 under different conditions. (c) Koutecky-Levich plots of CN and Zn-TCPP/CN2. (d) Photocatalytic H2O2 production activity of the samples. Reprinted with permission [199]. Copyright 2023, Elsevier.
|
[1] | 曹腾飞, 徐全龙, 张军, 王升高, 狄廷敏, 邓泉荣. 构建S型g-C3N4/BiOBr异质结以增强光催化合成过氧化氢性能[J]. 催化学报, 2025, 72(5): 118-129. |
[2] | 张艳峰, 王珊. Mn0.5Cd0.5S/MnWO4中的S型异质结和超晶格界面用于增强光催化产氢[J]. 催化学报, 2025, 71(4): 1-4. |
[3] | 岳诗雅, 李荣, 魏政荣, 高云, Karen Wilson, 陈绪兴. 构建内建电场可调的全固溶体S型异质结以实现高效光催化活性[J]. 催化学报, 2025, 71(4): 353-362. |
[4] | 吴永辉, 鄢雨晴, 邓奕翔, 黄微雅, 杨凯, 卢康强. 合理构建S型CdS量子点/In2O3空心纳米管异质结以增强光催化产氢[J]. 催化学报, 2025, 70(3): 333-340. |
[5] | 刘晓明, 姜志锋. 含有带内缺陷能级的S型异质结用于人工光合作用[J]. 催化学报, 2025, 70(3): 5-7. |
[6] | 许明阳, 李真真, 沈荣晨, 张欣, 张治红, 张鹏, 李鑫. 构建卟啉基共价有机框架与Nb2C MXene的S型异质结并应用于光催化过氧化氢生产[J]. 催化学报, 2025, 70(3): 431-443. |
[7] | 夏兵全, 刘高雄, 樊坤, 陈润东, 刘欣, 李来全. 基于双氧还原中心的共价三嗪框架构建的1D/2D S型异质结促进过氧化氢光合作用[J]. 催化学报, 2025, 69(2): 315-326. |
[8] | 李世杰, 游常俊, 杨方, 梁桂杰, 庄春强, 李鑫. 界面Mo-S化学键调控Mn0.5Cd0.5S/Bi2MoO6 S型异质结增强光催化去除新兴有机污染物[J]. 催化学报, 2025, 68(1): 259-271. |
[9] | 毛思航, 赫荣安, 宋少青. S型异质结界面超快电子转移促进人工光合成[J]. 催化学报, 2024, 64(9): 1-3. |
[10] | 刘方璇, 孙彬, 刘子妍, 魏英勤, 高婷婷, 周国伟. 空位工程调控中空结构ZnO/ZnS S型异质结用于高效光催化产氢[J]. 催化学报, 2024, 64(9): 152-165. |
[11] | 陈春光, 张金锋, 褚海亮, 孙立贤, Graham Dawson, 代凯. 硫族化物基S型异质结光催化剂[J]. 催化学报, 2024, 63(8): 81-108. |
[12] | 赵艳艳, 杨春燕, 张淑敏, 孙国太, 朱必成, 王临曦, 张建军. 飞秒瞬态吸收光谱研究ZnSe QDs/COF S型异质结光催化产H2O2中载流子传输机理[J]. 催化学报, 2024, 63(8): 258-269. |
[13] | 王福林, 李祥伟, 卢康强, 周漫, 余长林, 杨凯. S型CuInS2@CoS2异质结促进电荷转移以实现高效光催化CO2还原[J]. 催化学报, 2024, 63(8): 190-201. |
[14] | 张棋祺, 苗慧, 王俊, 孙涛, 刘恩周. In2.77S4/K+掺杂g-C3N4自组装S型异质结光催化H2O和O2合成H2O2[J]. 催化学报, 2024, 63(8): 176-189. |
[15] | 梁腾, 李雨彤, 徐帅, 姚宇欣, 许荣萍, 边辑, 张紫晴, 井立强. 电荷迁移方向调控的BiVO4量子点/苝四羧酸Z型异质结与纳米金修饰在人工光合成H2O2中的协同作用[J]. 催化学报, 2024, 62(7): 277-286. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||