催化学报 ›› 2026, Vol. 81: 319-332.DOI: 10.1016/S1872-2067(25)64875-3

• 论文 • 上一篇    下一篇

N,Te配位Fe-Co双金属位点作为高效氧电催化剂用于高性能锌空电池

徐慧民a,1, 宫萧琪b,1, 岳楷航c,1, 黄陈金a, 朱鸿睿a, 宋联杰d, 李高仁a()   

  1. a 四川大学材料科学与工程学院, 四川成都 610065
    b 中山大学化学学院, 广东广州 510275
    c 中国科学院上海硅酸盐研究所, 能源转换材料重点实验室, 上海 200050
    d 中国十九冶集团有限公司, 四川成都 610031
  • 收稿日期:2025-06-25 接受日期:2025-09-11 出版日期:2026-02-18 发布日期:2025-12-26
  • 通讯作者: *电子信箱: ligaoren@scu.edu.cn (李高仁).
  • 作者简介:1共同第一作者.
  • 基金资助:
    国家自然科学基金(52373215);四川省自然科学基金(2023NSFSC0086);高校基本业务费(YJ2021156)

Fe and Co bimetallic single-atoms coordinated by N and Te as bifunctional oxygen reduction/evolution catalysts for high-performance zinc-air battery

Hui-Min Xua,1, Xiao-Qi Gongb,1, Kai-Hang Yuec,1, Chen-Jin Huanga, Hong-Rui Zhua, Lian-Jie Songd, Gao-Ren Lia()   

  1. a College of Materials Science and Engineering, Sichuan University, Chengdu 610065, Sichuan, China
    b School of Chemistry, Sun Yat-sen University, Guangzhou 510275, Guangdong, China
    c CAS Key Laboratory of Materials for Energy Conversion, Shanghai Institute of Ceramics, Chinese Academy of Sciences (SICCAS), Shanghai 200050, China
    d China 19th Metallurgical Group Corporation Limited, Chengdu 610031, Sichuan, China
  • Received:2025-06-25 Accepted:2025-09-11 Online:2026-02-18 Published:2025-12-26
  • Contact: *E-mail: ligaoren@scu.edu.cn (G.-R. Li).
  • About author:1 Contributed equally to this work.
  • Supported by:
    National Natural Science Foundation of China(52373215);Sichuan Science and Technology Program(2023NSFSC0086);Fundamental Research Funds for the Central Universities(YJ2021156)

摘要:

锌空气电池(ZABs)因其低成本、高理论能量密度(1086 Wh kg−1)及环境友好特性, 被视为极具前景的可持续储能技术. 然而, 其大规模应用受限于空气电极动力学缓慢的双功能氧催化过程—析氧反应(OER)与氧还原反应(ORR). 开发兼具高活性、低成本及稳定性的双功能催化剂是突破该瓶颈的核心挑战. 单金属单原子催化剂的性能受限于其单一活性位点的催化活性. 而双金属单原子体系利用金属协同效应, 可同时优化电荷转移效率与氧中间体(OOH, O, *OH)的吸附能垒, 从而为提升双功能催化性能开辟了新途径.

本研究使用具有独特的三角锥形结构的TeO32+作为金属阳离子的配体, 与Fe3+和Co2+形成桥接配位模式, 形成[M1-(TeO)-M2]的局部结构单元. 与简单的单齿配体(如氯离子、硝酸根离子)或小尺寸的多齿配体不同, TeO32+具有一定的空间尺寸, 有助于限制簇的大小, 并防止形成更大的金属聚合物. 在随后的热解过程中, 各种形式的碲(如TeO32+, TeO2, Te等)会经历复杂的转变(还原、挥发和掺杂), 最终形成具有N, Te共配位的铁钴双金属单原子催化剂(记为FeNxTey/CoNxTey@NC), 将其用作ZABs双功能催化剂. 该FeNxTey/CoNxTey@NC催化剂在碱性条件下表现出卓越的ORR/OER双功能催化性能: ORR半波电位高达0.912 V, 在10 mA cm−2电流密度下的OER过电位低至305 mV. 基于该催化剂的ZABs实现了306.1 mW cm−2的峰值功率密度和773.2 mAh g−1的高比能量密度. 实验数据表明, Te掺杂可实现FeNxTey/CoNxTey@NC中原子活性位点结构(理想化理论模型为FeCoN6Te)的高密度分布与精准调控. 密度泛函理论计算揭示, 当FeN4/CoN4模型(对应合成催化剂FeNx/CoNx@NC)转变为FeCoN6Te模型时, Te原子通过调控FeCoN6Te模型中Fe/Co位点的局部电荷密度, 促进双金属间的电荷转移, 进而优化ORR/OER反应中间体的吸附能.

综上, 本文成功研制出一种氮/碲(N/Te)共配位型双金属单原子催化剂, 其创新性在于: 一方面, 通过构建FeCoN6Te理论模型揭示了双功能催化的构效关系; 另一方面, 采用铁、钴等非贵金属元素显著降低锌空气电池的电极材料成本. 该工作为开发面向实际应用的高性能双原子催化剂提供了新的策略.

关键词: 双金属单原子, 碲配位, 氮掺杂碳, 氧还原反应, 析氧反应, 锌空气电池

Abstract:

Zinc air batteries (ZABs) are a low-cost, high-energy density, and green sustainable energy storage device. At present, the main challenge in achieving large-scale application of ZABs is to develop low-cost and high-performance bifunctional catalysts for oxygen evolution reaction (OER) and oxygen reduction reaction (ORR). Compared with monometallic single-atom catalyst, the bimetallic single-atoms catalyst can effectively improve ORR/OER bifunctional activity, realize rapid charge transfer, and play a significant role in regulating the adsorption of oxygen intermediates. In this study, we design the novel Fe and Co bimetallic single-atoms coordinated by Te and N anchoring on N-doped carbon (NC) (denoted as FeNxTey/CoNxTey@NC) for the first time, serving as a bifunctional catalyst for ZABs. This innovative catalyst exhibits excellent bifunctional ORR/OER catalytic performance under alkaline conditions, achieving a high half-wave potential of 0.912 V for ORR and a low overpotential of 305 mV for OER at 10 mA cm-2. The FeNxTey/CoNxTey@NC-based ZABs realizes a high peak power density of 306.1 mW cm-2 and a large specific energy density of 773.2 mAh g-1. The experimental data show that the N-doped can achieve precise regulation of the structure and high-density distribution of atomic active sites in FeNxTey/CoNxTey@NC (idealized theoretical model is FeCoN6Te). The density functional theory calculations show that when the FeN4/CoN4 models (the synthesized catalyst denoted as FeNx/CoNx@NC) transforms into FeCoN6Te models, Te atoms regulate the local charge densities of Fe and Co on FeCoN6Te models and further promote the charge transfer between Fe and Co on FeCoN6Te models, which optimizes the adsorption energies of ORR/OER intermediates. The findings in this study will pave the way for the development of high-performance bimetallic single-atom catalysts for practical energy conversion applications.

Key words: Bimetallic single-atoms, Te coordination, N-doped Carbon, Oxygen reduction reaction, Oxygen evolution reaction, Zinc-air battery