催化学报 ›› 2020, Vol. 41 ›› Issue (10): 1535-1543.DOI: 10.1016/S1872-2067(19)63486-8

• 论文 • 上一篇    下一篇

BiOCl0.9I0.1/β-Bi2O3复合材料在模拟太阳光下光催化降解盐酸四环素性能

马雄b, 陈凯怡a, 牛斌b, 李艳b, 王磊b, 黄静伟b, 佘厚德b, 王其召a,b   

  1. a 长安大学环境科学与工程学院, 干旱区地下水文与生态效应重点实验室, 陕西西安 710064;
    b 西北师范大学化学化工学院, 甘肃兰州 730070
  • 收稿日期:2020-02-25 修回日期:2020-03-29 出版日期:2020-10-18 发布日期:2020-08-15
  • 通讯作者: 王其召
  • 基金资助:
    国家自然科学基金(21663027,21808189);甘肃省科技支撑项目(1504GKCA027);中央高校基本科研业务费领军人才项目(300102299304).

Preparation of BiOCl0.9I0.1/β-Bi2O3 composite for degradation of tetracycline hydrochloride under simulated sunlight

Xiong Mab, Kaiyi Chena, Bin Niub, Yan Lib, Lei Wangb, Jingwei Huangb, Houde Sheb, Qizhao Wanga,b   

  1. a School of Environmental Science and Engineering, Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of Ministry of Education, Chang'an University, Xi'an 710064, Shanxi, China;
    b College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, Gansu, China
  • Received:2020-02-25 Revised:2020-03-29 Online:2020-10-18 Published:2020-08-15
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (21663027, 21808189), the Science and Technology Support Project of Gansu Province (1504GKCA027), the Fundamental Research Funds for the Central Universities of Chang'an University (300102299304), the Opening Project of Key Laboratory of Green Catalysis of Sichuan Institutes of High Education (LYJ18205).

摘要: 盐酸四环素(TCH)是一种常见且广泛用于制药保健和兽医领域的抗生素,水生环境中的TCH残留物可诱导抗生素抗性病原体的发展,并对人类健康具有潜在的长期威胁.然而,传统的物理吸附和生物降解方法很难实现对TCH的降解.光催化技术由于其高效,简单的操作和低成本被认为是降解TCH的实用方法.BiOX(X=Cl,Br和I)是具有间接带隙的半导体,其光生载流子的复合概率相对较低,因而在光催化中有着广泛应用.但是,当单独BiOX作为光催化材料时,其电子-空穴对分离弱、载流子传输慢,从而使BiOX不能很好的在光催化领域发挥作用.为了缓解或解决此限制性因素,将卤氧化物BiOCl0.9I0.1与半导体β-Bi2O3复合,通过在光照下降解20mg·L-1的TCH来评价复合材料的光催化性能.
基于此,本文采用电子扫描电镜(SEM)、高分辨透射电镜(HRTEM)、X射线衍射(XRD)、和电流时间(i-t)等对其进行了表征和活性测试,通过UV-vis漫反射光谱,Mott-Schottky图和XPS光谱,分析样品的相对VB和CB边缘位置和元素价态;通过能带评价,探讨了BiOCl0.9I0.1/15%β-Bi2O3在TCH降解过程中光催化活性的可能机理.SEM分析表明,纯BiOCl0.9I0.1样品是方形纳米片且尺寸约为100nm,其规则地成形并层层覆盖.将制备的BiOCl0.9I0.1/15%β-Bi2O3复合物的基本形态与纯BiOCl0.9I0.1和纯β-Bi2O3进行比较,纯β-Bi2O3为块状结构,形成复合物后,BiOCl0.9I0.1纳米片作为组分嵌入β-Bi2O3块中,BiOCl0.9I0.1纳米片在β-Bi2O3表面部分聚集成最终覆盖整个表面的小花状微结构.BiOCl0.9I0.1纳米片的存在极大地增加了复合物的比表面积,并为反应提供了更多的活性位点.HRTEM表征结果进一步确认了上述结果.紫外漫反射吸收光谱表明,β-Bi2O3能有效增加BiOCl0.9I0.1对可见光的吸收,增加了对光的利用率.
光催化性能测试表明在光照120min后,BiOCl0.9I0.1/15%β-Bi2O3复合材料的样品中TCH的降解率达到了82.4%,而BiOCl0.9I0.1,β-Bi2O3,BiOCl0.9I0.1/5%β-Bi2O3,BiOCl0.9I0.1/10%β-Bi2O3和BiOCl0.9I0.1/20%β-Bi2O3等复合样品的TCH的降解率仅分别为54.8%,21.0%,70.0%,73.2%和79.9%,说明BiOCl0.9I0.1/15%β-Bi2O3对水中的盐酸四环素有很好的降解作用.为了探索TCH光降解中涉及的活性物质,我们进行了一系列清除试验,得出TCH光降解的主要活性物质是·O2-和·OH.为了研究BiOCl0.9I0.1/x%β-Bi2O3复合催化剂的重复使用性能,将反应后的样品粉末收集,并在相同条件下重复使用三次.结果发现,BiOCl0.9I0.1/15%β-Bi2O3的光催化活性未见显著降低,表明它具有优异的稳定性和可再利用性.

关键词: BiOCl0.9I0.1/&beta, -Bi2O3, 光降解, 盐酸四环素, 光催化, 模拟太阳光

Abstract: A novel and effective BiOCl0.9I0.1/x%β-Bi2O3 composite catalyst was synthesized through a precipitation method. The structure, morphology, and optical properties of the samples were certified by X-ray diffraction, UV-Vis diffuse reflectance, scanning electron microscopy, and X-ray photoelectron spectroscopic characterizations. Photocatalytic experiments demonstrated that the synthesized BiOCl0.9I0.1/x%β-Bi2O3 composite catalyst exhibited excellent photocatalytic performance toward the degradation of tetracycline hydrochloride (TCH) under simulated sunlight. Furthermore, the TCH degradation rate of BiOCl0.9I0.1/15%β-Bi2O3 increased by 27.6% and 61.4% compared with those of the pure BiOCl0.9I0.1 and pure β-Bi2O3, respectively. Due to the multiple vacancies and valence states possessed by BiOCl0.9I0.1/x%β-Bi2O3, namely Bi5+, Bi(3-x)+, Bi5+-O, Bi3+-O, I- and I3-, the charge separation in photocatalysis reactions can be effectively promoted. The Mott-Schottky measurements indicate that the conduction band (CB) level of BiOCl0.9I0.1/15%β-Bi2O3 becomes more negative relative to that of BiOCl0.9I0.1, guaranteeing an advantageous effect on the redox ability of the photocatalyst. This study provides a new bright spot for the construction of high-performance photocatalysts.

Key words: BiOCl0.9I0.1/β-Bi2O3, Degradation, Tetracycline hydrochloride, Photocatalysis, Simulated sunlight