催化学报 ›› 2022, Vol. 43 ›› Issue (11): 2913-2935.DOI: 10.1016/S1872-2067(22)64167-6
• 综述 • 上一篇
收稿日期:
2022-06-21
接受日期:
2022-08-16
出版日期:
2022-11-18
发布日期:
2022-10-20
通讯作者:
张伟,郑伟涛
基金资助:
Yuhua Liu, Wei Zhang*(), Weitao Zheng#(
)
Received:
2022-06-21
Accepted:
2022-08-16
Online:
2022-11-18
Published:
2022-10-20
Contact:
Wei Zhang, Weitao Zheng
About author:
Wei Zhang (Jilin University) obtained his Ph.D. degree at the Institute of Metal Research Chinese Academy of Sciences in 2004. Then He held positions in NIMS-Japan, Samsung AIT-South Korea, Fritz-Haber Institute of MPG-Germany, DTU-Denmark and CIC Energigune-Spain. He was awarded Ikerbasque Research Professor in 2016. In 2014, he became a full professor at Jilin University and has been selected as Tang Auchin Scholar Leading Professor since 2020; Now he serves as the Director of the Electron Microscopy Center of Jilin University. His current research focuses on surface and interface of advanced energy materials and catalysts. Prof. Zhang was invited as a member of the editorial board of Communications Chemistry at Nature Publishing Group.Supported by:
摘要:
研发高效的靶向药物一直是药物研究的重点, 科研人员通过高端电镜技术解析了病毒的表面结构, 并构建了病毒-受体间相互作用模型. 受该相互作用的启发, 本课题组前期研究构建了MXene量子点(MXene quantum dots, MQDs)表面官能团与反应物间的相互关系(Energy & Environmental Materials, 2022, DOI: https://doi.org/10.1002/eem2.12438), 提出了MQDs表面官能团可作为一个微型实验室, 进行不同的表面修饰. 另外, 基于John Meurig Thomas教授提出的单活性中心多相催化和张涛研究员提出的单原子催化理论, 在纳米尺度调控材料尺寸以及活性中心的原子环境和结构, 可提高反应的定向选择性, 进而高选择性地生成目标产物.
本文将病毒机制与单活性中心及单原子催化理论相结合, 探讨了新兴的零维半导体纳米材料MQDs表面官能团类型 (-F, -Cl, -O, -OH, -Br, -NH2等)对反应选择性的重要影响, 以实现对催化产物的定向设计. 此外, 综述了MQDs在催化领域的应用研究进展, 讨论了具有不同表面基团MQDs的催化反应机理, 总结了表面基团的设计原则及修饰策略. 深度讨论了表征技术在分析MQDs结构性质及揭示其表面催化活性中心转变过程中的应用, 包括MQDs的识别技术, 通过原位的表征技术定位活性位点, 监测催化反应过程中的相、形貌的变化及其对催化反应的影响; 同时, 探讨了现阶段MQDs表征技术的局限性. 讨论了密度泛函理论计算在进一步揭示活性位点及反应过程中各部分能量变化中的应用, 更深入理解MQDs的表面结构, 指导设计高活性的MQDs基催化剂.
从以下6个方面对MQDs相关研究进行了总结和展望. (1) MQDs的种类及合成方法存在多样性, 包括不同组分(如Mo2C, Nb2C, Ti2N), 不同比例(如Ti3C2, Ti4C3, Ti2C)的MQDs晶体结构, 进而导致催化性能不同. (2) 通过严格控制合成条件(如反应温度、压力、含氧量和时间等), 降低杂质的影响, 合成出具有高纯度和优良结构的MQDs样品, 将有助于更准确地分析MQDs的形成机制. (3) 应探索MQDs基催化剂先进的表征技术: 通过原位表征技术揭示MQDs基异质结构催化剂间的相互作用机制、活性中心的动态变化以及催化反应过程中的结构演变, 对于理解催化反应机理, 提高MQDs催化性能具有重要意义. 此外, 需要进一步发展可在原子尺度下揭示MQDs表面或近表面组分的表征技术. 受冷冻电镜技术可揭示病毒表面的S蛋白与人体细胞受体结合的结构等工作的启发, 未来可通过低温电子显微镜技术更精准地表征MQDs表面结构. (4) 解决MQDs在合成及催化反应过程中的易团聚的问题. 此外, 由于MQDs在水溶液中容易氧化, 可考虑探索MQDs在不同有机溶剂(如乙醇、N,N-二甲基甲酰胺、二甲基亚砜)中的分散性. (5) 探讨表面化学性质对MQDs的半导体行为和光催化反应机理影响. 目前, MQDs常被用作光催化中增强光生电子提取的助催化剂, 很少有关于表面化学性质对MQDs的半导体行为和光催化反应机理影响的报道, 应加强此方向的研究. (6) MQDs表面官能团类型对于提高电催化反应选择性的机理还有待完善, 需要发展无氟、对环境友好的MQDs制备工艺.
刘玉华, 张伟, 郑伟涛. MXene量子点的表面化学: 受病毒机制启发的催化微型实验室[J]. 催化学报, 2022, 43(11): 2913-2935.
Yuhua Liu, Wei Zhang, Weitao Zheng. Surface chemistry of MXene quantum dots: Virus mechanism-inspired mini-lab for catalysis[J]. Chinese Journal of Catalysis, 2022, 43(11): 2913-2935.
Fig. 1. (a,b) Comparison of the structures between carbon materials quantum dots and MQDs. (c) Functional groups of MQDs for specific functionalization. (d) The structure of novel coronavirus SARS-CoV-2. Reprinted with permission from Ref. [22]. Copyright 2020, Nature Publishing Group.
Fig. 3. (a) Schematic diagram of MXene and MQDs. (b) Comparison of HER overpotentials at current density of 10 mA cm-2 between different metal-based MXene and MQDs.
Fig. 4. (a) Mechanistic illustration of NRR and free energy on the Ti-edge of bare MXene, and F, OH position of Ti3C2F2, Ti3C2(OH)2. (b) NH3 yield for the different catalysts. Reprinted with permission from Ref. [47]. Copyright 2020, Wiley. (c) STEM image of Ti3C2 MQDs with defects. (d) Charge density difference of Ti3C2 MQDs. (e,f) Adsorption energy of O2, LiO2 molecules in optimized MQDs structure. (g-i) Charge density difference of Ti3C2 MQDs and adsorption energy of O2, LiO2 molecules. Reprinted with permission from Ref. [51]. Copyright 2021, Wiley. (j) Charge density difference of Ti2CTx MQDs/Cu2O heterogenous structure. (k) Functional groups evolution. Reprinted with permission from Ref. [52]. Copyright 2022, Wiley.
Fig. 6. Design of heterogeneous structure between semiconductor photocatalyst and MQDs. (a) Ti3C2 MQDs as electrons donors in Ti3C2-QD/Ni-MOF heterojunctions. Reprinted with permission from Ref. [57]. Copyright 2020, ACS. (b) Ti3C2 MQDs as electrons acceptors in Ti3C2-QDs/ZnIn2S4/Ti Flower-like heterojunction. Reprinted with permission from Ref. [58]. Copyright 2020, MDPI. (c) Z-Scheme heterostructure of BiVO4@ZnIn2S4/Ti3C2 MQDs composites. Reprinted with permission from Ref. [60]. Copyright 2020, Elsevier. (d-f) S-Scheme heterostructure of TiO2/C3N4/Ti3C2 MQDs composites. Reprinted with permission from Ref. [59]. Copyright 2020, Elsevier. (g) Photoelectrocatalytic mechanism of Co-MQDs. Reprinted with permission from Ref. [61]. Copyright 2020, Wiley. (h) Photoelectrocatalytic mechanism of MQDs as reservoirs of HTL. Reprinted with permission from Ref. [62]. Copyright 2022, Wiley.
MQDs | Type of groups | Synthesis | Catalytic applications | Ref. |
---|---|---|---|---|
Ti3C2Tx | -O, -OH, -F | Hydrothermal | Water oxidation | [ |
Ti3C2(OH)2 | -OH | Alkalization treatment | Electrocatalytic N2 reduction | [ |
Ti3C2Tx | -O, -OH, -F, -Cl | Cell-crushing | Photocatalytic HER | [ |
Ti2CTx | -O, -OH, -Cl | Acid treatment | Electrocatalytic HER | [ |
Ti3C2Tx | -O, -OH, -F | hydrothermal | Photocatalytic N2 photofixation | [ |
Ti3C2Tx | -O, -OH, -F, -Cl | Sonication | Electrocatalytic HER | [ |
V2CTx | -O, -OH, -F | Sonication | Electrocatalytic HER | [ |
Nb2CTx | -O, -OH, -F, -Cl | Sonication | Electrocatalytic HER | [ |
Ti3C2Tx | -O, -OH, -F, -Cl | Sonication | Photocatalytic Cr4+ reduction, BPA oxidation | [ |
Ti3C2Tx | -O, -OH, -F | Solvothermal | Li-O2 Batteries | [ |
Ti3C2Tx | -O, -OH, -F, -NH2 | Sonication | Photocatalytic H2O2 production | [ |
Ti3C2Tx | -O, -OH, -F, -Cl | Sonication | Photocatalytic TC degradation | [ |
Ti3C2Tx | -O, -OH, -F | Hydrothermal | Zinc-air batteries | [ |
Ti3C2Tx | -O, -OH, -F | Reflux | Photocatalytic NO | [ |
Ti3C2Tx | -O, -OH, -F | Hydrothermal | Photocatalytic N2 reduction | [ |
Ti3C2Tx | -O, -OH, -F | Hydrothermal | Photocatalytic CO2 reduction | [ |
Ti3C2Tx | -O, -OH, -F | Hydrothermal | Photocatalytic water splitting | [ |
Ti3C2Tx | -O, -OH, -F | Hydrothermal | Electrocatalytic ORR, MOR | [ |
Ti3C2Tx | -O, -OH, -F | Hydrothermal | Photocatalytic HER | [ |
Ti3C2Tx | -O, -OH, -F | Hydrothermal | Photocatalytic CO2 reduction | [ |
Table 1 The controllable synthesis and applications of MQDs.
MQDs | Type of groups | Synthesis | Catalytic applications | Ref. |
---|---|---|---|---|
Ti3C2Tx | -O, -OH, -F | Hydrothermal | Water oxidation | [ |
Ti3C2(OH)2 | -OH | Alkalization treatment | Electrocatalytic N2 reduction | [ |
Ti3C2Tx | -O, -OH, -F, -Cl | Cell-crushing | Photocatalytic HER | [ |
Ti2CTx | -O, -OH, -Cl | Acid treatment | Electrocatalytic HER | [ |
Ti3C2Tx | -O, -OH, -F | hydrothermal | Photocatalytic N2 photofixation | [ |
Ti3C2Tx | -O, -OH, -F, -Cl | Sonication | Electrocatalytic HER | [ |
V2CTx | -O, -OH, -F | Sonication | Electrocatalytic HER | [ |
Nb2CTx | -O, -OH, -F, -Cl | Sonication | Electrocatalytic HER | [ |
Ti3C2Tx | -O, -OH, -F, -Cl | Sonication | Photocatalytic Cr4+ reduction, BPA oxidation | [ |
Ti3C2Tx | -O, -OH, -F | Solvothermal | Li-O2 Batteries | [ |
Ti3C2Tx | -O, -OH, -F, -NH2 | Sonication | Photocatalytic H2O2 production | [ |
Ti3C2Tx | -O, -OH, -F, -Cl | Sonication | Photocatalytic TC degradation | [ |
Ti3C2Tx | -O, -OH, -F | Hydrothermal | Zinc-air batteries | [ |
Ti3C2Tx | -O, -OH, -F | Reflux | Photocatalytic NO | [ |
Ti3C2Tx | -O, -OH, -F | Hydrothermal | Photocatalytic N2 reduction | [ |
Ti3C2Tx | -O, -OH, -F | Hydrothermal | Photocatalytic CO2 reduction | [ |
Ti3C2Tx | -O, -OH, -F | Hydrothermal | Photocatalytic water splitting | [ |
Ti3C2Tx | -O, -OH, -F | Hydrothermal | Electrocatalytic ORR, MOR | [ |
Ti3C2Tx | -O, -OH, -F | Hydrothermal | Photocatalytic HER | [ |
Ti3C2Tx | -O, -OH, -F | Hydrothermal | Photocatalytic CO2 reduction | [ |
Fig. 7. Synthesis of Ti3C2Tx MQDs with -F, -OH, -O and -NH2 groups (a) and the FTIR spectra of Ti3C2Tx MQDs (c). Reprinted with permission from Ref. [64]. Copyright 2017, Wiley. Synthesis of Ti3C2Tx MQDs with -F, -OH, -O groups (b) and the FTIR spectra of Ti3C2Tx MQDs (d). Reprinted with permission from Ref. [58]. Copyright 2021, MDPI. Synthesis of Ti3C2Cl2 MQDs with -Cl groups (e) and the FTIR of Ti3C2Cl2 MQDs (f). Reprinted with permission from Ref. [72]. Copyright 2022, Elsevier. Synthesis of Ti3C2 MQDs with O-containing groups (g) and the XPS spectra of Ti3C2 MQDs (h). Reprinted with permission from Ref. [73]. Copyright 2017, RSC.
Fig. 8. (a) Schematic illustration of and HRTEM image of Ru@CDs. (b) Schematic illustration of and HRTEM image of Ru@PC. (c) Schematic illustration of and HRTEM image of Ru@P-AC. Reprinted with permission from Ref. [89]. Copyright 2020, RSC. (d) Overpotential summarization of Ru and different support, 5 wt% Ru/C catalysts based on Ref. [89]. (e) HRTEM images of N-CDs@Co. Inset: Schematic illustration of N-CDs@Co. Reprinted with permission from Ref. [93]. Copyright 2019, ACS. (f) Overpotential summarization of different CD-based catalysts-based Ref. [93] in 0.5 mol L?1 H2SO4, 1 mol L?1 KOH, respectively.
Fig. 9. (a) HAADF-STEM image of Ti3C2 MQDs with edge defects and grain boundary. (b) HAADF-STEM of Ti3C2 MXene nanosheets (MNS). (c) EPR spectra of MQDs/N-C, MNS/N-C and single MQDs/N-C. Reprinted with permission from Ref. [51]. Copyright 2021, Wiley-VCH. (d) Synthesis route of TinO2n-1 QDs with oxygen vacancies. (e) EPR spectra of OV-TinO2n-1 QDs@porous carbon nanosheets. (f) Adsorption energies of Li2S4 on the surface of TinO2n-1 QDs with and without OVs, inset Fig. is crystal structure of Ti3C5 QDs. Reprinted with permission from Ref. [98]. Copyright 2021, Wiley-VCH. (g) Mechanism of defect induced FL. (h) Time-dependent FL intensity of MQDs after adding Ni2+. Reprinted with permission from Ref. [101]. Copyright 2021, ACS.
Fig. 10. Total density of states (TDOS) and electronic band structures of Ti8C4O8 (a) and Ti8C4O6P2 (b). Local density of states (LDOS) of Ti8C4O8 (c) and Ti8C4O6P2 (d). (e) Schematic diagram of O 2p orbital orientation vary from O 2px to O 2pz after P doping; Dissociation barrier of H2O and release barrier of H of Ti8C4O8 (f) and Ti8C4O6P2 (g). Reprinted with permission from Ref. [27]. Copyright 2018, Wiley. (h) Mechanistic illustration of hybrid orbital between H and O in V2CO2. (i) Mechanism of hybrid orbital between H and O in V2CO2 after introducing metal atom. (j-l) Difference charge density of V2CO2 after introducing transition metal under the same Ni coverage of 12.5 ML%. (m) Difference charge density of V2CO2 with 16.7 ML% coverage. (n) Gibbs free energy of H adsorption ΔGH at T0 sites (12.5% ML) as a function of strain. Reprinted with permission from Ref. [28]. Copyright 2016, Wiley.
Fig. 11. (a) TEM image of LDH/MQDs. (b) Geometric structure model of LDH/MQD composite. (c) HRTEM image of LDH/MQDs. (d) LSV curves of different catalysts for ORR and OER. Reprinted with permission from Ref. [78]. Copyright 2021, Wiley. (e) TEM image of MoS2 QDs @Ti3C2MQDs @MWCNTs. (f,g) LSV curves of different catalysts for ORR and MOR. Reprinted with permission from Ref. [80]. Copyright 2019, Elsevier. (h) Structural schematics of Ti2C MQDs/Cu2O/Cu foam electrocatalyst. (i) LSV curves of Ti2C MQDs/Cu2O/Cu foam for HER reaction. Reprinted with permission from Ref. [52]. Copyright 2022, Wiley.
Fig. 12. (a) Self-crosslinked mechanism of graphene QDs. (b) Morphology of self-crosslinked process; TEM image of GQDs-NH2 and SEM images of freeze-dried Ir/GQDs-NH2. Reprinted with permission from Ref. [87]. Copyright 2021, Springer. (c) TEM image of Ru@CQDs, inset: size distribution of the Ru particle. (d) TEM image of Ru@CQDs. (e) LSV curves of different Ru-based catalysts. Reprinted with permission from Ref. [112]. Copyright 2018, Wiley. (f) Model of Pt nanoparticles. (g) Terraces population of (100), (111), and step sites of Pt nanoparticles as a function of Pt particle sizes. Reprinted with permission from Ref. [113]. Copyright 2022, ACS. (h-j) Computational model of bare M2C, Ti2CO2 and Mo2CO2 MXene. Reprinted with permission from Ref. [29]. Copyright 2020, Elsevier.
Fig. 13. (a) Atomic force microscope (AFM) image of Ti2CTx MXene nanosheets. (b) Structure models of Ti2CTx with the different amount fluorine atoms. (c) LSV curves of Ti2CTx before and after removing -F groups. Reprinted with permission from Ref. [43]. Copyright 2018, Elsevier. (d) Volcano curves of exchange current (i0) as a function of the average Gibbs free energy (ΔGaH*). Reprinted with permission from Ref. [108]. Copyright 2017, ACS. (e) Bader charge of V3CNO2-2x(OH)2x at different -OH coverage. (f) Gibbs free energy of hydrogen adsorption on the surface of M3CNO2-2x(OH)2x at different -OH coverage. Reprinted with permission from Ref. [117]. Copyright 2017, Elsevier. (g) Partial density of states (PDOS) of Ti2CT2 with different functional groups. Reprinted with permission from Ref. [119]. Copyright 2013, APS. (h) Gibbs free energy calculation of Ti3C2 MQDs with different functional groups. Reprinted with permission from Ref. [47]. Copyright 2020, Wiley.
Fig. 14. (a) TEM image of Ti3C2 MQDs/Cu nanocomposite. (Inset: Inverse Fourier Transform of interface between MQDs and Cu). (b) DOS of Cu side, MQDs side and MQDs/Cu. (c) Charge density difference of MQDs/Cu. (d) NH3 yield of Cu, MQDs and MQDs/Cu electrocatalyst. Reprinted with permission from Ref. [120]. Copyright 2022, Wiley. (e,f) TEM images of WO3/TQDs. (g,h) TEM images of WO3/TQDs/In2S3. (i) UV-vis diffuse reflectance spectroscopy of different catalysts. (j) Photocatalytic activity of different catalysts. (k) Schematic illustration of WO3/TQDs/In2S3. Reprinted with permission from Ref. [75]. Copyright 2021, Elsevier.
Fig. 15. Summarizing the characterization techniques of surface functional groups. Reprinted with permission from Ref. [47,72,101,107,124]. Copyright 2020, Wiley & Copyright 2021, ACS & Copyright 2021, Wiley & Copyright 2021, Elsevier & Copyright 2021, Elsevier, respectively.
Fig. 16. (a) Atomic-resolution HAADF images of Cl-terminated layered Ti3C2 MXene. Insets: the enlarged views of the atomic positions correspond to crystal structure of the right, and the atomic-scale EDS maps. Reprinted with permission from Ref. [125]. Copyright 2021, Springer Nature. (b) HAADF image of Ti3C2Br2 MXene sheets. (c) Line scan profile of elemental analysis. Reprinted with permission from Ref. [126]. Copyright 2020, AAAS. (d) HAADF-STEM image of Ti3C2 MQDs clusters. (e) HAADF-STEM and TEM images of single Ti3C2 MQDs. Reprinted with permission from Ref. [51]. Copyright 2021, Wiley.
Fig. 17. In-situ/operando characterization technique of CF-O and CF-FeSO catalysts. (a) In-situ/operando Raman spectroscopy electrochemical cell. (b) Raman spectroscopy of CF-O. (c) Raman spectroscopy of CF-FeSO. (d) In-situ/operando NEXAFS electrochemical cell. (e) Co-K edge XANES spectrum. (f) Co L-edge NEXAFS spectrum. Reprinted with permission from Ref. [130]. Copyright 2022, Springer Nature.
Fig. 18. (a) Morphology of β-CoOOH particles at different voltage (Scale bars: 500 nm). (b) Variation of CoO layers with the change of voltage. (c) Line scan of nanoparticles height (top) and the relationship of height-voltage (bottom). (d) Operando STXM equipment. (e) STXM-XAS spectra of Co LIII-edge. (f) Steady-state voltage-dependent phase images of β-Co(OH)2 nanoparticles. Scale bar, 1 μm. Reprinted with permission from Ref. [131]. Copyright 2021, Springer Nature. (g) In-situ APXPS equipment. (h) APXPS spectra of Co2p3/2. Reprinted with permission from Ref. [132]. Copyright 2017, ACS. (i) Operando XRD patterns of the NiCeOxHy catalyst under different potentials. Reprinted with permission from Ref. [133]. Copyright 2018, Nature Publishing Group.
Fig. 19. Energy band structure of Ti2C MXene (a), Ti2CO2 (b), and Ti2C(OH)2 (c). (d) Surface Pourbaix diagrams of Ti2C. (e) Stability of Ti2C with different O* and OH* species. Reprinted with permission from Ref. [108]. Copyright 2016, ACS. (f) Interface structure model of Cr2CO2. (g) Gibbs free energy of Cr2CO2 at different H coverage. Reprinted with permission from Ref. [137]. Copyright 2019, ACS. (h-j) Structure models of NC, MoC, and MoC@NC. (k) HER free energy diagram of NC, MoC, and MoC@NC. Reprinted with permission from Ref. [138]. Copyright 2022, Wiley-VCH. (l) HER activation energy calculation of catalysts. Reprinted with permission from Ref. [139]. Copyright 2018, Springer Nature.
|
[1] | 曾繁林, 朱虎林, 王茹楠, 袁晓亚, 孙凯, 屈凌波, 陈晓岚, 於兵. 一种用于光催化C(sp2)‒H键官能团化通用的非均相钒酸铋催化剂[J]. 催化学报, 2023, 46(3): 157-166. |
[2] | 王可, 程淼, 王楠, 张千一, 刘懿, 梁俊威, 管杰, 刘茂昌, 周建成, 李乃旭. 2D/2D超薄La2Ti2O7/Ti3C2 Mxene肖特基异质结用于高效光催化CO2还原[J]. 催化学报, 2023, 44(1): 146-159. |
[3] | 伯知豫, 颜思顺, 高田宇, 宋磊, 冉川昆, 何轶, 章炜, 曹光梅, 余达刚. 可见光催化二氧化碳参与多氟芳烃的选择性C-F键羧基化[J]. 催化学报, 2022, 43(9): 2388-2394. |
[4] | 钱秀, 魏艳娇, 孙梦洁, 韩野, 张晓俐, 田健, 邵敏华. 在Ti3C2Tx MXene上原位生长2D TiO2纳米片的异质结构用于改善电催化氮气还原[J]. 催化学报, 2022, 43(7): 1937-1944. |
[5] | 李能, 彭嘉禾, 史祖皓, 张鹏, 李鑫. TM@Ti2CTx电催化还原CO2: 官能团诱导电子轨道重构与电荷转移[J]. 催化学报, 2022, 43(7): 1906-1917. |
[6] | 高怡静, 张世杰, 孙翔, 赵伟, 卓涵, 庄桂林, 王式彬, 姚子豪, 邓声威, 钟兴, 魏中哲, 王建国. 氧官能团MXenes用于电催化合成氨的理论筛选[J]. 催化学报, 2022, 43(7): 1860-1869. |
[7] | 朱纯, 梁锦霞, 王阳刚, 李隽. MXene负载的非贵金属单原子催化剂催化CO氧化反应[J]. 催化学报, 2022, 43(7): 1830-1841. |
[8] | 白浚贤, 沈荣晨, 姜志民, 张鹏, 李佑稷, 李鑫. 集成二维层状CdS/WO3 S型异质结及金属化Ti3C2 MXene基欧姆结高效光催化产氢[J]. 催化学报, 2022, 43(2): 359-369. |
[9] | 李华鹏, 孙彬, 高婷婷, 李欢, 任永强, 周国伟. Ti3C2 MXene助催化剂组装的介孔TiO2用以增强光催化甲基橙降解和产氢活性[J]. 催化学报, 2022, 43(2): 461-471. |
[10] | 关晨, 岳晓阳, 范佳杰, 向全军. MXene量子点(Ti3C2): 性质、合成及其在能源领域的应用[J]. 催化学报, 2022, 43(10): 2484-2499. |
[11] | 王乐乐, 杨涛, 彭李杰, 张琪琪, 佘希林, 唐华, 刘芹芹. 2D/2D/2D三明治结构ZnIn2S4/g-C3N4/Ti3C2 Mxene S型异质结-肖特基结双通道电荷转移路径促进的光催化析氢[J]. 催化学报, 2022, 43(10): 2720-2731. |
[12] | 曲家乐, 肖杰文, 陈和田, 刘晓鹏, 王天帅, 张千帆. 轨道对称性匹配: MXene基体上的单原子催化以实现优异的氮还原反应[J]. 催化学报, 2021, 42(2): 288-296. |
[13] | 孙凯, 肖芳, 於兵, 何卫民. 光/电催化喹喔啉酮官能团化反应研究进展[J]. 催化学报, 2021, 42(11): 1921-1943. |
[14] | 楚卫锋, 刘晓娜, 杨志强, Nakata Hiroya, 谭兴智, 刘雪斌, 徐龙伢, 郭鹏, 李秀杰, 朱向学. FER分子筛中铝原子的受限落位[J]. 催化学报, 2021, 42(11): 2078-2087. |
[15] | 荣佳悦, 王珍珍, 吕嘉奇, 范明, 种瑞峰, 常志显. Ni(OH)2量子点助催化剂修饰α-Fe2O3光阳极增强光电分解水性能[J]. 催化学报, 2021, 42(11): 1999-2009. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||