催化学报 ›› 2026, Vol. 81: 159-171.DOI: 10.1016/S1872-2067(25)64862-5

• 论文 • 上一篇    下一篇

铜钼协同掺杂金属有机框架双壳空心纳米球: 表面重构激活吸附物演化和晶格氧机制

唐宇a, 陈阳b, 陈柯润a, Edmund Qia, 刘晓旸b(), 陆海彦b(), 高宇a()   

  1. a 吉林大学物理学院, 新型电池物理与技术教育部重点实验室, 吉林长春 130012
    b 吉林大学化学学院, 无机合成与制备化学全国重点实验室, 吉林长春 130012
  • 收稿日期:2025-06-23 接受日期:2025-08-28 出版日期:2026-02-18 发布日期:2025-12-26
  • 通讯作者: *电子信箱: yugao@jlu.edu.cn (高宇),luhy@jlu.edu.cn (陆海彦),liuxy@jlu.edu.cn (刘晓旸).
  • 基金资助:
    国家自然科学基金(22179048);中央高校基础研究经费

Cu-Mo synergistic doping of metal-organic framework double-shelled hollow nanospheres: Surface reconstruction activates adsorbate evolution and lattice oxygen mechanisms

Yu Tanga, Yang Chenb, Kerun Chena, Edmund Qia, Xiaoyang Liub(), Haiyan Lub(), Yu Gaoa()   

  1. a Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun 130012, Jilin, China
    b State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, Jilin, China
  • Received:2025-06-23 Accepted:2025-08-28 Online:2026-02-18 Published:2025-12-26
  • Contact: *E-mail: yugao@jlu.edu.cn (Y. Gao),luhy@jlu.edu.cn (H. Lu),liuxy@jlu.edu.cn (X. Liu).
  • Supported by:
    National Natural Science Foundation of China(22179048);Fundamental Research Funds for the Central Universities

摘要:

水电解技术是实现可持续氢气生产的关键技术, 而析氧反应(OER)作为水电解中的核心反应, 其效率受到反应动力学制约, 特别是四电子耦合过程的缓慢性. 贵金属催化剂在OER中具有高活性, 但由于其稀缺性和高成本, 限制了其广泛应用. 因此, 开发具有高效性、低成本且长期稳定的过渡金属催化剂成为了当前的研究热点. 本文提出了一种新型催化剂设计策略, 通过整合吸附物演化机制(AEM)和晶格氧机制(LOM), 设计并合成了一种具有双重反应机制的空心双壳纳米球催化剂. 通过这一新颖的催化剂设计方法, 合成了具有铜钼协同掺杂的CuCo2S4/MoS2 OER催化剂, 显著提升了其催化性能, 为OER催化剂的设计和应用提供了新的思路.

本文开发了一种高效的方法在室温下合成了ZIF-67的双壳空心纳米球. 该方法有效解决了钴基金属有机框架(MOFs)中存在的无效空隙问题, 同时保留了ZIF-67的固有化学活性. 通过消除无效体积, ZIF-67及其衍生物的活性位点密度得到了显著增强, 从而提升了其在电催化OER中的性能. 采用了创新的模板法合成了铜钼共掺杂的CuCo2S4/MoS2催化剂. 利用ZIF-67的固有空心结构和化学活性, 结合铜的姜泰勒效应激活晶格氧, 促进LOM机制的发生. 为进一步验证该催化剂的双重机制, 利用原位拉曼光谱、同位素标记电化学质谱(DEMS)和原位红外光谱对其反应过程进行了全面的表征. 原位拉曼光谱结果表明, CuCo2S4/MoS2催化剂在电位升高时从Co3O4转变为CoOOH, 进一步转化为CoO2, 与CoOOH共存, 证明了晶格氧的激活和AEM与LOM机制的协同作用. 同时, 通过DEMS测试, 追踪了18O同位素在OER反应中的交换, 证明了晶格氧的参与. 此外, 原位红外光谱进一步确认了OOH和O-O中间体的形成, 支持了AEM和LOM双重机制的协同作用. 铜和钼之间的协同作用促使催化剂表面重构, 优化了反应中间体的吸附, 特别是加速了去质子化步骤, 并有助于AEM中*OOH的形成, 从而降低了反应能垒. 钼的引入进一步优化了反应路径, 通过铜和钼原子之间的空间差异增强了两种机制的催化性能. 通过双重机制的兼容性, 该催化剂在碱性介质中表现出出色的电化学性能(在100 mA cm−2下过电位为320 mV), 并在商业水分解设备中展示了优异的稳定性(在500 mA cm−2下维持300 h).

综上, 本研究证实CuCo2S4/MoS2双壳空心纳米球催化剂在碱性OER中具有优异性能, 这归因于空心双壳结构和高密度电化学活性位点. 本文为整合AEM和LOM机制的OER催化剂设计提供了新思路, 并展示了ZIF-67在电催化和储能中的潜力.

关键词: 吸附物演化机制, 晶格氧机制, 析氧反应, CuCo2S4/MoS2, 双壳层空心纳米球

Abstract:

In order to attain high catalytic activity and long-term stability in the oxygen evolution reaction (OER), it is essential to design catalysts with hollow structures that integrate both the adsorbate evolution mechanism (AEM) and the lattice oxygen mechanism (LOM). Based on the above issues, we developed a novel templating method and, for the first time, synthesized double-shelled hollow nanospheres of ZIF-67. Utilizing the inherent hollow structure and chemical activity of ZIF-67, and through Cu-Mo co-doping, we prepared a CuCo2S4/MoS2 OER catalyst with dual mechanisms. The Jahn-Teller effect of copper activates lattice oxygen, facilitating LOM in OER. The cooperative interaction between copper and molybdenum atoms induces surface reconstruction in the catalyst, accelerates the deprotonation step in LOM, and aids in the formation of *OOH in AEM, thus reducing energy barriers and optimizing the adsorption of reaction intermediates. The addition of molybdenum further boosts catalytic performance by enhancing both mechanisms, owing to the spatial disparity between Cu and Mo atoms. Due to the compatibility of the dual mechanisms, the catalyst demonstrates outstanding electrochemical performance in alkaline media (320 mV at 100 mA cm−2) and maintains a stable catalytic current in a commercial water-splitting device (500 mA cm−2 for 300 h). This study presents an innovative strategy for designing oxygen evolution reaction catalysts that integrate both AEM and LOM mechanisms. Considering the widespread applications of ZIF-67 in electrocatalysis and electrochemical energy storage, CuCo-G@ZIF-67 not only serves as a versatile precursor for the synthesis of various catalysts but also paves the way for the development of novel transition metal catalysts and multi-shell energy storage materials.

Key words: Adsorbate evolution mechanism, Lattice oxygen mechanism, Oxygen evolution reaction, CuCo2S4/MoS2, Double-shelled hollow nanospheres