Chinese Journal of Catalysis ›› 2013, Vol. 34 ›› Issue (5): 838-850.DOI: 10.1016/S1872-2067(12)60573-7
• Reviews • Previous Articles Next Articles
TA Naa, LIU (Jimmy) Jingyuea,b, SHEN Wenjie a
Received:
2013-02-21
Revised:
2013-05-20
Online:
2013-05-06
Published:
2013-05-06
Supported by:
This work was supported by the National Natural Science Foundation of China (20923001, 21025312, and 21103172).
TA Na, LIU (Jimmy) Jingyue, SHEN Wenjie. Tuning the shape of ceria nanomaterials for catalytic applications[J]. Chinese Journal of Catalysis, 2013, 34(5): 838-850.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(12)60573-7
[1] Bell A T. Science, 2003, 299: 1688 [2] Somorjai G A, Li Y M. Top Catal, 2010, 53: 311 [3] Murzin D Y. J Mol Catal A, 2010, 315: 226 [4] Valden M, Lai X, Goodman D W. Science, 1998, 281: 1647 [5] Haruta M, Kobayashi T, Sano H, Yamada N. Chem Lett, 1987: 405 [6] Haruta M, Yamada N, Kobayashi T, Iijima S. J Catal, 1989, 115: 301 [7] Haruta M. CATTECH, 2002, 6(3): 102 [8] Haruta M. Nature, 2005, 437: 1098 [9] Haruta M. Faraday Discuss, 2011, 152: 11 [10] Ertl G. Angew Chem, Int Ed, 2008, 47: 3524 [11] Zaera F. Acc Chem Res, 2009, 42: 1152 [12] van Santen R A, Neurock M, Shetty S G. Chem Rev, 2010, 110: 2005 [13] Narayanan R, El-Sayed M A. Nano Lett, 2004, 4: 1343 [14] Narayanan R, El-Sayed M A. J Am Chem Soc, 2004, 126: 7194 [15] Narayanan R, El-Sayed M A. J Phys Chem B, 2005, 109: 12663 [16] Tian N, Zhou Zh Y, Sun Sh G, Ding Y, Wang Zh L. Science, 2007, 316:732 [17] Bratlie K M, Kliewer C J, Somorjai G A. J Phys Chem B, 2006, 110:17925 [18] Bratlie K M, Lee H, Komvopoulos K, Yang P D, Somorjai G A. Nano Lett, 2007, 7: 3097 [19] Chen J Y, Lim B, Lee E P, Xia Y N. Nano Today, 2009, 4: 81 [20] Peng Zh M, Yang H. Nano Today, 2009, 4: 143 [21] Niu W X, Xu G B. Nano Today, 2011, 6: 265 [22] Xie X W, Li Y, Liu Z Q, Haruta M, Shen W J. Nature, 2009, 458: 746 [23] Zheng Y H, Cheng Y, Wang Y Sh, Bao F, Zhou L H, Wei X F, Zhang Y Y, Zheng Q. J Phys Chem B, 2006, 110: 3093 [24] Leng M, Liu M Zh, Zhang Y B, Wang Zh Q, Yu Ch, Yang X G, Zhang H J, Wang Ch. J Am Chem Soc, 2010, 132: 17084 [25] Kuo C H, Huang M H. Nano Today, 2010, 5: 106 [26] Trovarelli A. Catalysis by ceria and related materials. In: Hutchings G J ed. Catalytic Science Series. London: Imperial College Press, 2002 [27] Mai H X, Sun L D, Zhang Y W, Si R, Feng W, Zhang H P, Liu H Ch, Yan Ch H. J Phys Chem B, 2005, 109: 24380 [28] Sayle T X T, Parker S C, Catlow C R A. Surf Sci, 1994, 316: 329 [29] Sayle D C, Maicaneanu S A, Watson G W. J Am Chem Soc, 2002, 124: 11429 [30] Jiang Y, Adams J B, van Schilfgaarde M. J Chem Phys, 2005, 123: 064701 [31] Zhou K B, Wang X, Sun X M, Peng Q, Li Y D. J Catal, 2005, 229: 206 [32] Tana, Zhang M L, Li J, Li H J, Li Y, Shen W J. Catal Today, 2009, 148: 179 [33] Si R, Flytzani-Stephanopoulos M. Angew Chem, Int Ed, 2008, 47: 2884 [34] Han W Q, Wen W, Hanson J C, Teng X W, Marinkovic N, Rod-riguez J A. J Phys Chem C, 2009, 113: 21949 [35] Boucher M B, Goergen S, Yi N, Flytzani-Stephanopoulos M. Phys Chem Chem Phys, 2011, 13: 2517 [36] Li F, Hoang D T, Tsung C K, Huang W Y, Lo S H Y, Wood J B, Wang H T, Tang J Y, Yang P D. Nano Res, 2011, 4: 61 [37] Agarwal S, Lefferts L, Mojet B L. ChemCatChem, 2013, 5: 479 [38] Wang Z L, Feng X D. J Phys Chem B, 2003, 107: 13563 [39] Yang S W, Gao L. J Am Chem Soc, 2006, 128: 9330 [40] Xu J X, Li G Sh, Li L P. Mater Res Bull, 2008, 43: 990 [41] Wang T, Sun D Ch. Mater Res Bull, 2008, 43: 1754 [42] Wang D Sh, Xie T, Peng Q, Zhang Sh Y, Chen J, Li Y D. Chem Eur J, 2008, 14: 2507 [43] Yuan Q, Duan H H, Li L L, Sun L D, Zhang Y W, Yan Ch H. J Colloid Interface Sci, 2009, 335: 151 [44] Feng W, Sun L D, Zhang Y W, Yan Ch H. Coord Chem Rev, 2010, 254: 1038 [45] Zhang D S, Du X J, Shi L Y, Gao R H. Dalton Trans, 2012, 41: 14455 [46] Tyrsted C, Jensen K M O, Bojesen E D, Lock N, Christensen M, Billinge S J L, Brummerstedt B. Angew Chem, Int Ed, 2012, 51: 9030 [47] Sun C W, Li H, Chen L Q. Energy Environ Sci, 2012, 5: 8475 [48] Kaneko K, Inoke K, Freitag B, Hungria A B, Midgley P A, Hansen T W, Zhang J, Ohara S, Adschiri T. Nano Lett, 2007, 7: 421 [49] Yang Zh Q, Zhou K B, Liu X W, Tian Q, Lu D Y, Yang S. Nanotech-nology, 2007, 18: 185606 [50] Lin M, Fu Z Y, Tan H R, Tan J P Y, Ng S C, Teo E. Cryst Growth Des, 2012, 12: 3296 [51] Qian L W, Zhu J, Du W M, Qian X F. Mater Chem Phys, 2009, 115: 835 [52] Dang F, Kato K, Imai H, Wada S, Haneda H, Kuwabara M. Cryst Growth Des, 2010, 10: 4537 [53] Wang X, Jiang Zh Y, Zheng B J, Xie Zh X, Zheng LS. CrystEngComm, 2012, 14: 7579 [54] Lv J G, Shen Y, Peng L M, Guo X F, Ding W P. Chem Commun, 2010, 46: 5909 [55] Zhang J, Kumagai H, Yamamura K, Ohara S, Takami S, Morikawa A, Shinjoh H, Kaneko K, Adschiri T, Suda A. Nano Lett, 2011, 11: 361 [56] Taniguchi T, Katsumata K, Omata S, Okada K, Matsushita N. Cryst Growth Des, 2011, 11: 3754 [57] Lin K S, Chowdhury S. Int J Mol Sci, 2010, 11: 3226 [58] Gao F, Lu Q Y, Komarneni S. J Nanosci Nanotechnol, 2006, 6: 3812 [59] Tang B, Zhuo L H, Ge J Ch, Wang G L, Shi Zh Q, Niu J Y. Chem Com-mun, 2005: 3565 [60] Pan Ch S, Zhang D S, Shi L Y, Fang J H. Eur J Inorg Chem, 2008: 2429 [61] Wang W, Howe J Y, Li Y, Qiu X F, Joy D C, Paranthaman M P, Dok-tycz M J, Gu B. J Mater Chem, 2010, 20: 7776 [62] Bugayeva N, Robinson J. Mater Sci Technol, 2007, 23: 237 [63] Chen H L, Zhu H Y, Wang H, Dong L, Zhu J J. J Nanosci Nanotechnol, 2006, 6: 157 [64] Cerovic L, Lair V, Lupan O, Cassir M, Ringuede A. Chem Phys Lett, 2010, 494: 237 [65] Yu T, Joo J, Park Y I, Hyeon T. Angew Chem, Int Ed, 2005, 44: 7411 [66] Lin H L, Wu Ch Y, Chiang R K. J Colloid Interface Sci, 2010, 341: 12 [67] Yang Y F, Jin Y Zh, He H P, Ye Zh Zh. CrystEngComm, 2010, 12: 2663 [68] Martin P, Parker S C, Sayle D C, Watson G W. Nano Lett, 2007, 7: 543 [69] Zhang D S, Fu H X, Shi L Y, Fang J H, Li Q. J Solid State Chem, 2007, 180: 654 [70] Zhang D S, Pan Ch S, Shi L Y, Huang L, Fang J H, Fu H X. Micropor-ous Mesoporous Mater, 2009, 117: 193 [71] Gonzalez-Rovira L, Sanchez-Amaya J M, Lopez-Haro M, del Rio E, Hungria A B, Midgley P, Calvino J J, Bernal S, Botana F J. Nano Lett, 2009, 9: 1395 [72] Chen G Zh, Sun S X, Sun X, Fan W L, You T. Inorg Chem, 2009, 48: 1334 [73] Wu X Sh, Kawi S. Cryst Growth Des, 2010, 10: 1833 [74] Chen G Zh, Xu C X, Song X Y, Zhao W, Ding Y, Sun S X. Inorg Chem, 2008, 47: 723 [75] Zhou K B, Yang Zh Q, Yang S. Chem Mater, 2007, 19: 1215 [76] Tang Ch Ch, Bando Y, Liu B D, Golberg D. Adv Mater, 2005, 17: 3005 [77] Han W Q, Wu L J, Zhu Y M. J Am Chem Soc, 2005, 127: 12814 [78] Mercadelli E, Ghetti G, Sanson A, Bonelli R, Albonetti S. Ceram Inter, 2013, 39: 629 [79] Pan Ch S, Zhang D S, Shi L Y. J Solid State Chem, 2008, 181: 1298 [80] Ivanov V K, Polezhaeva O S. Russ J Inorg Chem, 2009, 54: 1528 [81] Wang D Y, Kang Y J, Doan-Nguyen V, Chen J, Küngas R, Wieder N L, Bakhmutsky K, Gorte R J, Murray C B. Angew Chem, Int Ed, 2011, 50: 4378 [82] Yu R B, Yan L, Zheng P, Chen J, Xing X R. J Phys Chem C, 2008, 112: 19896 [83] Zhong L Sh, Hu J S, Cao A M, Liu Q, Song W G, Wan L J. Chem Mater, 2007, 19: 1648 [84] Li J F, Lu G Zh, Li H F, Wang Y Q, Guo Y, Guo Y L. J Colloid In-terface Sci, 2011, 360: 93 [85] Zhang D S, Niu F H, Yan T T, Shi L Y, Du X J, Fang J H. Appl Surf Sci, 2011, 257: 10161 [86] Yang Zh J, Liu L, Liang H, Yang H X, Yang Y Zh. J Cryst Growth, 2010, 312: 426 [87] Song Y T, Wei J J, Yang Y Zh, Yang Zh J, Yang H X. J Mater Sci, 2010, 45: 4158 [88] Chen G Zh, Zhu F F, Sun X, Sun S X, Chen R P. CrystEngComm, 2011, 13: 2904 [89] Chen G Zh, Xu C X, Song X Y, Xu Sh L, Ding Y, Sun S X. Cryst Growth Des, 2008, 8: 4449 [90] Bond G C, Thompson D T. Gold Bull, 2000, 33(2): 41 [91] Lopez N, Janssens T V W, Clausen B S, Xu Y, Mavrikakis M, Bligaard T, Norskov J K. J Catal, 2004, 223: 232 [92] Stephen A, Hashmi A S K, Hutchings G J. Angew Chem, Int Ed, 2006, 45: 7896 [93] Haruta M. Catal. Today, 1997, 36: 153 [94] Sandoval A, Gomez-Cortes A, Zanella R, Diaz G, Saniger J M. J Mol Catal A, 2007, 278: 200 [95] Campbell C T, Sharp J C, Yao Y X, Karp E M, Silbaugh T L. Far-aday Discuss, 2011, 152: 227 [96] Andreeva D, Ivanov I, Ilieva L, Abrashev M V. Appl Catal A, 2006, 302: 127 [97] Rodriguez J A, Ma S, Liu P, Hrbek J, Evans J, Pérez M. Science, 2007, 318: 1757 [98] Baron M, Bondarchuk O, Stacchiola D, Shaikhutdinov S, Freund H J. J Phys Chem C, 2009, 113: 6042 [99] Carrettin S, Concepcion P, Corma A, Lopez Nieto J M, Puntes V F. Angew Chem, Int Ed, 2004, 43: 2538 [100] Huang P X, Wu F, Zhu B L, Gao X P, Zhu H Y, Yan T Y, Huang W P, Wu S H, Song D Y. J Phys Chem B, 2005, 109: 19169 [101] Huang X S, Sun H, Wang L C, Liu Y M, Fan K N, Cao Y. Appl Catal B, 2009, 90: 224 [102] Niu F H, Zhang D S, Shi L Y, He X Q, Li H R, Mai H L, Yan T T. Mater Lett, 2009, 63: 2132 [103] Yi G Q, Xu Zh N, Guo G C, Tanaka K, Yuan Y Zh. Chem Phys Lett, 2009, 479: 128 [104] Yi G Q, Yang H W, Li B D, Lin H Q, Tanaka K, Yuan Y Zh. Catal Today, 2010, 157: 83 [105] Yuan Zh Y, Idakiev V, Vantomme A, Tabakova T, Ren T Zh, Su B L. Catal Today, 2008, 131: 203 [106] Yi N, Si R, Saltsburg H, Flytzani-Stephanopoulos M. Appl Catal B, 2010, 95: 87 [107] Yi N, Si R, Saltsburg H, Flytzani-Stephanopoulos M. Energy Environ Sci, 2010, 3: 831 [108] Zhang Ch J, Michaelides A, Jenkins S J. Phys Chem Chem Phys, 2011, 13: 22 [109] Farmer J A, Campbell C T. Science, 2010, 329: 933 [110] Esch F, Fabris S, Zhou L, Montini T, Africh C, Fornasiero P, Comelli G, Rosei R. Science, 2005, 309: 752 [111] Liu X W, Zhou K B, Wang L, Wang B Y, Li Y D. J Am Chem Soc, 2009, 131: 3140 [112] Guan Y J? Ligthart D A J M? Pirgon-Galin O? Pieterse J A Z? van Santen R A? Hensen E J M. Top Catal, 2011? 54: 424 [113] Tana, Wang F G, Li H J, Shen W J. Catal Today, 2011, 175: 541 [114] Liu J Y. ChemCatChem, 2011, 3: 934 [115] Akita T, Okumura M, Tanaka K, Kohyama M, Haruta M. Catal Today, 2006, 117: 62 [116] Akita T, Tanaka K, Kohyama M. J Mater Sci, 2008, 43: 3917 [117] Majimel J, Lamirand-Majimel M, Moog I, Feral-Martin C, Tr?guer-Delapierre M. J Phys Chem C, 2009, 113: 9275 [118] Akita T, Tanaka S, Tanaka K, Kohyama M. Mater Sci Forum, 2010, 654-656: 2362 [119] Akita T, Tanaka S, Tanaka K, Haruta M, Kohyama M. J Mater Sci, 2011, 46: 4384 [120] Uchiyama T, Yoshida H, Kuwauchi Y, Ichikawa S, Shimada S, Haruta M, Takeda S. Angew Chem Int Ed, 2011, 50: 10157 [121] Yoshida H, Kuwauchi Y, Jinschek J R, Sun K, Tanaka S, Ko-hyama M, Shimada S, Haruta M, Takeda S. Science, 2012, 335: 317 [122] Ta N, Liu J Y, Chenna S, Crozier P A, Li Y, Chen A, Shen W J. J Am Chem Soc, 2012, 134: 20585 [123] Sayle D C, Feng X D, Ding Y, Wang Zh L, Sayle T X T. J Am Chem Soc, 2007, 129: 7924 [124] Weststrate C J, Resta A, Westerstr?m R, Lundgren E, Mik-kelsen A, Andersen J N. J Phys Chem C, 2008, 112: 6900 [125] Chen Y, Hu P, Lee M H, Wang H F. Surf Sci, 2008, 602: 1736 [126] Fronzi M, Soon A, Delley B, Traversa E, Stampfl C. J Phys Chem C, 2009, 131: 104701 [127] Naya K, Ishikawa R, Fukui K. J Phys Chem C, 2009, 113: 10726 [128] Zhu W J, Zhang J, Gong X Q, Lu G Zh. Catal Today, 2011, 165: 19 [129] Chen Y Ch, Chen K B, Lee Ch Sh, Li M C. J Phys Chem C, 2009, 113: 5031 [130] Chen W T, Chen K B, Wang M F, Weng Sh F, Lee Ch Sh, Lin M C. Chem Commun, 2010, 46: 3286 [131] Acuna L M, Munoz F F, Cabezas M D, Lamas D G, Leyva A G, Fantini M C A, Baker R T, Fuentes R O. J Phys Chem C, 2010, 114: 19687 [132] Li H J, Qi G Sh, Tana, Zhang X J, Li W, Shen W J. Catal Sci Technol, 2011, 1: 1677 [133] Gupta K, Bhattacharya S, Chattopadhyay D, Mukhopadhyay A, Biswas H, Dutta J, Ray N R, Ghosh U C. Chem Eng J, 2011, 172: 219 [134] Li G Sh, Zhang D Q, Yu J C. Phys Chem Chem Phys, 2009, 11: 3775 [135] Reddy B M, Reddy G K, Ganesh I, Ferreira J M F. J Mater Sci 2009, 44: 2743 [136] Watanabe S, Ma X L, Song Ch Sh. J Phys Chem C, 2009, 113: 14249 |
[1] | Si-Yuan Xia, Qi-Yuan Li, Shi-Nan Zhang, Dong Xu, Xiu Lin, Lu-Han Sun, Jingsan Xu, Jie-Sheng Chen, Guo-Dong Li, Xin-Hao Li. Size-dependent electronic interface effect of Pd nanocube-based heterojunctions on universally boosting phenol hydrogenation reactions [J]. Chinese Journal of Catalysis, 2023, 49(6): 180-187. |
[2] | Suwei Xia, Qixing Zhou, Ruoxu Sun, Lizhang Chen, Mingyi Zhang, Huan Pang, Lin Xu, Jun Yang, Yawen Tang. In-situ immobilization of CoNi nanoparticles into N-doped carbon nanotubes/nanowire-coupled superstructures as an efficient Mott-Schottky electrocatalyst toward electrocatalytic oxygen reduction [J]. Chinese Journal of Catalysis, 2023, 54(11): 278-289. |
[3] | Yuyan Qiao, Yanqiu Pan, Jiangwei Zhang, Bin Wang, Tingting Wu, Wenjun Fan, Yucheng Cao, Rashid Mehmood, Fei Zhang, Fuxiang Zhang. Multiple carbon interface engineering to boost oxygen evolution of NiFe nanocomposite electrocatalyst [J]. Chinese Journal of Catalysis, 2022, 43(9): 2354-2362. |
[4] | Meiyu Zhang, Chaochao Qin, Wanjun Sun, Congzhao Dong, Jun Zhong, Kaifeng Wu, Yong Ding. Energy funneling and charge separation in CdS modified with dual cocatalysts for enhanced H2 generation [J]. Chinese Journal of Catalysis, 2022, 43(7): 1818-1829. |
[5] | Jingjing Wang, Cheng Hu, Yihe Zhang, Hongwei Huang. Engineering piezoelectricity and strain sensitivity in CdS to promote piezocatalytic hydrogen evolution [J]. Chinese Journal of Catalysis, 2022, 43(5): 1277-1285. |
[6] | Chenxin Chen, Suqi He, Kamran Dastafkan, Zehua Zou, Qingxiang Wang, Chuan Zhao. Sea urchin-like NiMoO4 nanorod arrays as highly efficient bifunctional catalysts for electrocatalytic/photovoltage-driven urea electrolysis [J]. Chinese Journal of Catalysis, 2022, 43(5): 1267-1276. |
[7] | Yang Fu, Qixian Xie, Linxiao Wu, Jingshan Luo. Crystal facet effect induced by different pretreatment of Cu2O nanowire electrode for enhanced electrochemical CO2 reduction to C2+ products [J]. Chinese Journal of Catalysis, 2022, 43(4): 1066-1073. |
[8] | Zicong Jiang, Yong Zhang, Liuyang Zhang, Bei Cheng, Linxi Wang. Effect of calcination temperatures on photocatalytic H2O2-production activity of ZnO nanorods [J]. Chinese Journal of Catalysis, 2022, 43(2): 226-233. |
[9] | Anuj Kumar, Ying Zhang, Yin Jia, Wen Liu, Xiaoming Sun. Redox chemistry of N4-Fe 2+ in iron phthalocyanines for oxygen reduction reaction [J]. Chinese Journal of Catalysis, 2021, 42(8): 1404-1412. |
[10] | Yuxiang Liao, Jun Li, Shiming Zhang, Shengli Chen. High index surface-exposed and composition-graded PtCu3@Pt3Cu@Pt nanodendrites for high-performance oxygen reduction [J]. Chinese Journal of Catalysis, 2021, 42(7): 1108-1116. |
[11] | Jingping Zhong, Kexin Huang, Wentao Xu, Huaguo Tang, Muhammad Waqas, Youjun Fan, Ruixiang Wang, Wei Chen, Yixuan Wang. New strategy of S,N co-doping of conductive-copolymer-derived carbon nanotubes to effectively improve the dispersion of PtCu nanocrystals for boosting the electrocatalytic oxidation of methanol [J]. Chinese Journal of Catalysis, 2021, 42(7): 1205-1215. |
[12] | Dongdong Wang, Wanbing Gong, Jifang Zhang, Miaomiao Han, Chun Chen, Yunxia Zhang, Guozhong Wang, Haimin Zhang, Huijun Zhao. Encapsulated Ni-Co alloy nanoparticles as efficient catalyst for hydrodeoxygenation of biomass derivatives in water [J]. Chinese Journal of Catalysis, 2021, 42(11): 2027-2037. |
[13] | Linhe Zhang, Fudong Zhang, Huaqing Xue, Jianfeng Gao, Yong Peng, Weiyu Song, Lei Ge. Mechanism investigation of PtPd decorated Zn0.5Cd0.5S nanorods with efficient photocatalytic hydrogen production combining with kinetics and thermodynamics [J]. Chinese Journal of Catalysis, 2021, 42(10): 1677-1688. |
[14] | Yu Aung May, Wei-Wei Wang, Han Yan, Shuai Wei, Chun-Jiang Jia. Insights into facet-dependent reactivity of CuO-CeO2 nanocubes and nanorods as catalysts for CO oxidation reaction [J]. Chinese Journal of Catalysis, 2020, 41(6): 1017-1027. |
[15] | Hui Zhao, Chen-Chen Weng, Jin-Tao Ren, Li Ge, Yu-Ping Liu, Zhong-Yong Yuan. Phosphonate-derived nitrogen-doped cobalt phosphate/carbon nanotube hybrids as highly active oxygen reduction reaction electrocatalysts [J]. Chinese Journal of Catalysis, 2020, 41(2): 259-267. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||