Chinese Journal of Catalysis ›› 2026, Vol. 82: 312-326.DOI: 10.1016/S1872-2067(25)64877-7
• Articles • Previous Articles Next Articles
Lan Jianga, Yang Zenga, Jianhua Chena, Songhai Xiea, Yan Peia, Weiming Huaa, Shirun Yana, Xueying Chena, Minghua Qiaoa,*(
), Baoning Zongb,*(
)
Received:2025-07-22
Accepted:2025-09-02
Online:2026-03-18
Published:2026-03-05
Contact:
* E-mail: Supported by:Lan Jiang, Yang Zeng, Jianhua Chen, Songhai Xie, Yan Pei, Weiming Hua, Shirun Yan, Xueying Chen, Minghua Qiao, Baoning Zong. Crystal plane engineering of rutile TiO2 nanorods: Boosting Pt-WOx catalyzed glycerol hydrogenolysis to 1,3-propanediol via {110} plane-associated defects[J]. Chinese Journal of Catalysis, 2026, 82: 312-326.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(25)64877-7
Fig. 2. TEM images of the RTNR-433 (a), RTNR-453 (c), RTNR-473 (e), and RTNR-493 (g) nanorods. The inset in (c) is a schematic model of an individual nanorod of RTNR-453. HRTEM images with FFT patterns of the RTNR-433 (b), RTNR-453 (d), RTNR-473 (f), and RTNR-493 (h) nanorods.
Fig. 3. (A) EPR spectra of the RTNR-433 (a), RTNR-453 (b), RTNR-473 (c), and RTNR-493 (d) nanorods. (B) EPR spectra of the Pt-WOx/RTNR-433 (a), Pt-WOx/RTNR-453 (b), Pt-WOx/RTNR-473 (c), and Pt-WOx/RTNR-493 (d) catalysts.
| Catalyst | Pt a (wt%) | W a (wt%) | ABET b (m2 g−1) | dpore b (nm) | Vpore b (cm3 g−1) | DPt c (%) | SPt c (m2 gPt−1) | dPt (nm) | nL e (μmol gcat−1) | nB e (μmol gcat−1) | |
|---|---|---|---|---|---|---|---|---|---|---|---|
| CO c | TEMd | ||||||||||
| Pt-WOx/RTNR-433 | 3.0 | 7.0 | 12 | 15.7 | 0.04 | 23 | 56 | 5.0 | 1.6 | 10 | 1 |
| Pt-WOx/RTNR-453 | 2.9 | 7.2 | 14 | 16.5 | 0.05 | 35 | 87 | 3.2 | 1.4 | 38 | 4 |
| Pt-WOx/RTNR-473 | 2.9 | 7.1 | 17 | 14.6 | 0.06 | 26 | 64 | 4.4 | 1.6 | 22 | 3 |
| Pt-WOx/RTNR-493 | 2.8 | 7.0 | 20 | 15.2 | 0.08 | 22 | 54 | 5.2 | 2.0 | 9 | 1 |
Table 1 Basic physicochemical properties of the Pt?WOx/RTNR-T catalysts.
| Catalyst | Pt a (wt%) | W a (wt%) | ABET b (m2 g−1) | dpore b (nm) | Vpore b (cm3 g−1) | DPt c (%) | SPt c (m2 gPt−1) | dPt (nm) | nL e (μmol gcat−1) | nB e (μmol gcat−1) | |
|---|---|---|---|---|---|---|---|---|---|---|---|
| CO c | TEMd | ||||||||||
| Pt-WOx/RTNR-433 | 3.0 | 7.0 | 12 | 15.7 | 0.04 | 23 | 56 | 5.0 | 1.6 | 10 | 1 |
| Pt-WOx/RTNR-453 | 2.9 | 7.2 | 14 | 16.5 | 0.05 | 35 | 87 | 3.2 | 1.4 | 38 | 4 |
| Pt-WOx/RTNR-473 | 2.9 | 7.1 | 17 | 14.6 | 0.06 | 26 | 64 | 4.4 | 1.6 | 22 | 3 |
| Pt-WOx/RTNR-493 | 2.8 | 7.0 | 20 | 15.2 | 0.08 | 22 | 54 | 5.2 | 2.0 | 9 | 1 |
Fig. 4. TEM images (a1?d1), TEM images with particle size distribution histograms of Pt NPs with Gaussian analysis fittings (a2?d2), and HRTEM images with FFT patterns (a3?d3). (a1?a3) Pt-WOx/RTNR-433; (b1?b3) Pt-WOx/RTNR-453; (c1?c3) Pt-WOx/RTNR-473; (d1?d3) Pt-WOx/RTNR-493.
Fig. 5. Ti 2p (A), O 1s (B), Pt 4f/W 5s (C), and W 4f/Ti 3p (D) spectra of the Pt-WOx/RTNR-433 (a), Pt-WOx/RTNR-453 (b), Pt-WOx/RTNR-473 (c), and Pt-WOx/RTNR-493 (d) catalysts.
| Catalyst | Pt2+/(Pt0 + Pt2+) intensity ratio | W5+/(W5+ + W6+) intensity ratio | Ti3+/Ti4+ intensity ratio | Ov/OL intensity ratio | Pt/Ti (at%) | W/Ti (at%) | Ov b (spins g−1) | Ti3+ b (spins g−1) |
|---|---|---|---|---|---|---|---|---|
| Pt-WOx/RTNR-433 | 0.26 | 0.14 | 0.20(16.7%) a | 0.09 | 0.13 | 0.22 | 11.5 × 1020 | 17.1 × 1018 |
| Pt-WOx/RTNR-453 | 0.39 | 0.15 | 0.43(30.1%) | 0.17 | 0.13 | 0.21 | 17.6 × 1020 | 58.7 × 1018 |
| Pt-WOx/RTNR-473 | 0.36 | 0.15 | 0.24(19.4%) | 0.11 | 0.11 | 0.23 | 13.1 × 1020 | 32.6 × 1018 |
| Pt-WOx/RTNR-493 | 0.14 | 0.15 | 0.14(12.3%) | 0.05 | 0.13 | 0.21 | 7.54 × 1020 | 8.55 × 1018 |
Table 2 The XPS fitting results and EPR results of the Pt?WOx/RTNR-T catalysts.
| Catalyst | Pt2+/(Pt0 + Pt2+) intensity ratio | W5+/(W5+ + W6+) intensity ratio | Ti3+/Ti4+ intensity ratio | Ov/OL intensity ratio | Pt/Ti (at%) | W/Ti (at%) | Ov b (spins g−1) | Ti3+ b (spins g−1) |
|---|---|---|---|---|---|---|---|---|
| Pt-WOx/RTNR-433 | 0.26 | 0.14 | 0.20(16.7%) a | 0.09 | 0.13 | 0.22 | 11.5 × 1020 | 17.1 × 1018 |
| Pt-WOx/RTNR-453 | 0.39 | 0.15 | 0.43(30.1%) | 0.17 | 0.13 | 0.21 | 17.6 × 1020 | 58.7 × 1018 |
| Pt-WOx/RTNR-473 | 0.36 | 0.15 | 0.24(19.4%) | 0.11 | 0.11 | 0.23 | 13.1 × 1020 | 32.6 × 1018 |
| Pt-WOx/RTNR-493 | 0.14 | 0.15 | 0.14(12.3%) | 0.05 | 0.13 | 0.21 | 7.54 × 1020 | 8.55 × 1018 |
Fig. 6. Raman spectra (A), UV-vis spectra (B), and Py-IR spectra (C) of the Pt-WOx/RTNR-433 (a), Pt-WOx/RTNR-453 (b), Pt-WOx/RTNR-473 (c), and Pt-WOx/RTNR-493 (d) catalysts. The Py-IR spectra are collected at 423 K. (D) The quantities of Br?nsted and Lewis acid sites and their total quantities on the Pt-WOx/RTNR-T catalysts.
| Catalyst | Conv. (%) | Sel. (%) | Yield1,3-PDO (%) | TOF c (h−1) | ||||
|---|---|---|---|---|---|---|---|---|
| 1,3-PDO | 1,2-PDO | 1-PrOH | 2-PrOH | Others b | ||||
| Pt-WOx/RTNR-433 | 59.5 | 41.3 | 0.7 | 52.3 | 5.5 | trace | 24.3 | 71 |
| Pt-WOx/RTNR-453 | 96.7 | 60.6 | 0.6 | 34.8 | 4.0 | trace | 58.6 | 109 |
| Pt-WOx/RTNR-473 | 75.6 | 46.0 | 0.7 | 44.3 | 8.9 | trace | 35.2 | 84 |
| Pt-WOx/RTNR-493 | 64.2 | 35.5 | 0.7 | 57.5 | 6.1 | trace | 22.8 | 52 |
| WOx/RTNR-453 | — | — | — | — | — | — | — | — |
| Pt/RTNR-453 | 0.4 | 51.0 | 3.5 | 20.2 | 20.1 | 5.3 | 0.2 | — |
Table 3 The catalytic results of the Pt-WOx/RTNR-T catalysts in the hydrogenolysis of glycerol.a
| Catalyst | Conv. (%) | Sel. (%) | Yield1,3-PDO (%) | TOF c (h−1) | ||||
|---|---|---|---|---|---|---|---|---|
| 1,3-PDO | 1,2-PDO | 1-PrOH | 2-PrOH | Others b | ||||
| Pt-WOx/RTNR-433 | 59.5 | 41.3 | 0.7 | 52.3 | 5.5 | trace | 24.3 | 71 |
| Pt-WOx/RTNR-453 | 96.7 | 60.6 | 0.6 | 34.8 | 4.0 | trace | 58.6 | 109 |
| Pt-WOx/RTNR-473 | 75.6 | 46.0 | 0.7 | 44.3 | 8.9 | trace | 35.2 | 84 |
| Pt-WOx/RTNR-493 | 64.2 | 35.5 | 0.7 | 57.5 | 6.1 | trace | 22.8 | 52 |
| WOx/RTNR-453 | — | — | — | — | — | — | — | — |
| Pt/RTNR-453 | 0.4 | 51.0 | 3.5 | 20.2 | 20.1 | 5.3 | 0.2 | — |
Fig. 7. Comparisons of the 1,3-PDO yield over the Pt?WOx/RTNR-453 catalyst with those over the literature TiO2-supported catalysts for glycerol hydrogenolysis (a) and the stability of the Pt?WOx/RTNR-453 catalyst with those of the literature TiO2-supported catalysts for glycerol hydrogenolysis with their stability being reported (b).
Fig. 8. Correlations of the {110}/{111} exposure ratio with the surface defect ratio determined by XPS and the amounts of Ti3+ and Ov quantified by EPR (a), Pt particle size and the amount of acid sites (b), and TOF and selectivity to 1,3-PDO (c).
Fig. 9. (a) Calculated energy profiles for H2 dissociation on Pt-WOx/rutile (110)-Ov and Pt-WOx/rutile (110) surfaces. (b,c) IS, TS, and FS for H2 dissociation on Pt-WOx/rutile (110)-Ov surfaces. (d,e) IS, TS, and FS for H2 dissociation on Pt-WOx/rutile (110) surfaces. IS, TS, and FS represent the initial state, transition state, and final state. Light blue, red, gray, brown, and off-white spheres represent Ti, O, Pt, W, and H, respectively.
Fig. 10. (a) Calculated energy profiles for hydrogen diffusion on Pt-WOx/rutile (110)-Ov and Pt-WOx/rutile (110) surfaces. (b,c) IS, TS, and FS for hydrogen diffusion on Pt-WOx/rutile (110)-Ov surfaces. (d,e) IS, TS, and FS for hydrogen diffusion on Pt-WOx/rutile (110) surfaces. IS, TS, and FS represent the initial state, transition state, and final state. Light blue, red, gray, brown, and off-white spheres represent Ti, O, Pt, W, and H, respectively.
|
| [1] | Jie Gao, Jing Liu, Mengdi Wang, Nuo Sun, Hao Hu, Xuejing Cui, Xin Zhou, Luhua Jiang. Alleviating hydroxyl poisoning on Ru through competitive adsorption regulation using anatase-rutile TiO2 heterostructures in alkaline hydrogen oxidation reaction [J]. Chinese Journal of Catalysis, 2026, 82(3): 74-83. |
| [2] | Wanggang Zhang, Haochen Xie, Hongliang Wang, Rufeng Tian, Lei Liu, Jian Wang, Yiming Liu. Atomic-level lattice matching in hexagonal WO3/TiO2 S-scheme heterojunctions for high-efficiency selective photoelectrocatalytic glycerol-to-dihydroxyacetone conversion [J]. Chinese Journal of Catalysis, 2026, 82(3): 161-173. |
| [3] | Dan Yang, Xiang Cui, Zhou Xu, Qian Yan, Yating Wu, Chunmei Zhou, Yihu Dai, Xiaoyue Wan, Yuguang Jin, Leonid M. Kustov, Yanhui Yang. Efficient electrocatalytic oxidation of glycerol toward formic acid over well-defined nickel nanoclusters capped by ligands [J]. Chinese Journal of Catalysis, 2025, 76(9): 185-197. |
| [4] | Zhengyu Zhou, Zhiliang Jin. Custom exposed crystal facets: Synergistic effect of optimum crystal facet anisotropy and Ohmic heterojunction boosting photocatalytic hydrogen evolution [J]. Chinese Journal of Catalysis, 2025, 74(7): 294-307. |
| [5] | Zhenghao Mao, Wenjing Xu, Na Han, Yanguang Li. Breaking the selectivity barrier in glycerol electrooxidation to glyceraldehyde via redox mediation [J]. Chinese Journal of Catalysis, 2025, 78(11): 336-342. |
| [6] | Yan Duan, Mifeng Xue, Bin Liu, Man Zhang, Yuchen Wang, Baojun Wang, Riguang Zhang, Kai Yan. Integration of theory prediction and experimental electrooxidation of glycerol on NiCo2O4 nanosheets [J]. Chinese Journal of Catalysis, 2024, 57(2): 68-79. |
| [7] | Kai Shi, Di Si, Xue Teng, Lisong Chen, Jianlin Shi. Enhanced electrocatalytic glycerol oxidation on CuCoN0.6/CP at significantly reduced potentials [J]. Chinese Journal of Catalysis, 2023, 53(10): 143-152. |
| [8] | Jianxiang Wu, Xuejing Yang, Ming Gong. Recent advances in glycerol valorization via electrooxidation: Catalyst, mechanism and device [J]. Chinese Journal of Catalysis, 2022, 43(12): 2966-2986. |
| [9] | Steffen Cychy, Sebastian Lechler, Zijian Huang, Michael Braun, Ann Cathrin Brix, Peter Blümler, Corina Andronescu, Friederike Schmid, Wolfgang Schuhmann, Martin Muhler. Optimizing the nickel boride layer thickness in a spectroelectrochemical ATR-FTIR thin-film flow cell applied in glycerol oxidation [J]. Chinese Journal of Catalysis, 2021, 42(12): 2206-2215. |
| [10] | Yuanyuan Jiang, Ruru Zhou, Huaiyuan Zhao, Boyong Ye, Yihua Long, Zhengbao Wang, Zhaoyin Hou. A highly active and stable organic-inorganic combined solid acid for the transesterification of glycerol under mild conditions [J]. Chinese Journal of Catalysis, 2021, 42(10): 1772-1781. |
| [11] | Jia Wang, Man Yang, Aiqin Wang. Selective hydrogenolysis of glycerol to 1,3-propanediol over Pt-W based catalysts [J]. Chinese Journal of Catalysis, 2020, 41(9): 1311-1319. |
| [12] | Nian Lei, Zhili Miao, Fei Liu, Hua Wang, Xiaoli Pan, Aiqin Wang, Tao Zhang. Understanding the deactivation behavior of Pt/WO3/Al2O3 catalyst in the glycerol hydrogenolysis reaction [J]. Chinese Journal of Catalysis, 2020, 41(8): 1261-1267. |
| [13] | Lihua Yang, Tianqu He, Chujun Lai, Ping Chen, Zhaoyin Hou. Selective oxidation of glycerol with oxygen in base-free solution over N-doped-carbon-supported Sb@PtSb2 hybrid [J]. Chinese Journal of Catalysis, 2020, 41(3): 494-502. |
| [14] | Lihua Yang, Xuewen Li, Ping Chen, Zhaoyin Hou. Selective oxidation of glycerol in a base-free aqueous solution: A short review [J]. Chinese Journal of Catalysis, 2019, 40(7): 1020-1034. |
| [15] | Kang Kong, Difan Li, Wenbao Ma, Qingqing Zhou, Guoping Tang, Zhenshan Hou. Aluminum(III) triflate-catalyzed selective oxidation of glycerol to formic acid with hydrogen peroxide [J]. Chinese Journal of Catalysis, 2019, 40(4): 534-542. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||