Chinese Journal of Catalysis ›› 2024, Vol. 60: 316-326.DOI: 10.1016/S1872-2067(24)60029-X
• Articles • Previous Articles Next Articles
Zhounan Yua,b, Leilei Zhanga,*(), Yuanlong Tana,b, Rizheng Jinga,b, Hongchen Caoa,b, Caiyi Loub,c, Rile Gea,d, Junhu Wanga,d, Aiqin Wanga,*(
), Tao Zhanga
Received:
2024-02-07
Accepted:
2024-03-28
Online:
2024-05-18
Published:
2024-05-20
Contact:
E-mail: Supported by:
Zhounan Yu, Leilei Zhang, Yuanlong Tan, Rizheng Jing, Hongchen Cao, Caiyi Lou, Rile Ge, Junhu Wang, Aiqin Wang, Tao Zhang. PS-PPh2 tethered Pt single atoms promoted by SnCl2 as highly efficient and regio-selective catalysts for the hydroformylation of higher α-alkenes[J]. Chinese Journal of Catalysis, 2024, 60: 316-326.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(24)60029-X
Entry | Pt loading (wt%) | Sn: Pt (molar ratio) | Conv. (%) | Yield (%) | l:b | δ (%) | ||||
---|---|---|---|---|---|---|---|---|---|---|
Hexane | Isomer | a | b | c | ||||||
1 | 0 | —b | 0.9 | 0 | 0.6 | 0 | 0 | 0 | — | −0.3 |
2 | 0.9 | 5 | 1.5 | 0 | 0.5 | 0 | 0 | 0 | — | −1.0 |
3 | 2.9 | 5 | 19.2 | 0.3 | 1.7 | 10.7 | 0 | 0 | linear | −6.4 |
4 | 4.7 | 5 | 93.2 | 3.6 | 13.1 | 70.8 | 1.7 | 0 | 42.2 | −4.2 |
5 | 7.7 | 5 | 91.3 | 3.9 | 12.8 | 76.9 | 1.2 | 0 | 64.6 | 3.5 |
6 | 4.7 | 0 | 6.9 | 0 | 0.6 | 0 | 0 | 0 | — | −6.3 |
7 | 4.7 | 2.5 | 65.8 | 1.2 | 4.4 | 55.4 | 0 | 0 | linear | −4.8 |
8 | 4.7 | 10 | 83.1 | 2.3 | 7.7 | 71.1 | 0.6 | 0 | 118 | −1.3 |
9 | 4.7 | 5(Fe) | 4.7 | 0 | 0.6 | 0 | 0 | 0 | — | −4.1 |
10 | 4.7 | 5(Au) | 7.1 | 0 | 0.6 | 0 | 0 | 0 | — | −6.5 |
11 | 4.7 | 5(Zn) | 4.1 | 0 | 0.7 | 0 | 0 | 0 | — | −3.4 |
12 | 8(Pd) c | 5 | 91.1 | 0 | 85.9 | 0 | 0 | 0 | — | −5.2 |
13 | 8(Pd) c | 5(Fe) | 18.2 | 0.1 | 12.2 | 0 | 0 | 0 | — | −6.0 |
14 | 8(Rh) c | — | 96.6 | 0.2 | 1.4 | 75.6 | 23.3 | 0 | 3.2 | +3.9 |
15 | 8(Rh) c | 5 | 99.6 | 0.2 | 17.2 | 54.4 | 30.0 | 7.7 | 1.1 | −2.7 |
Table 1 Catalytic performances of different catalysts for the hydroformylation of 1-hexene a.
Entry | Pt loading (wt%) | Sn: Pt (molar ratio) | Conv. (%) | Yield (%) | l:b | δ (%) | ||||
---|---|---|---|---|---|---|---|---|---|---|
Hexane | Isomer | a | b | c | ||||||
1 | 0 | —b | 0.9 | 0 | 0.6 | 0 | 0 | 0 | — | −0.3 |
2 | 0.9 | 5 | 1.5 | 0 | 0.5 | 0 | 0 | 0 | — | −1.0 |
3 | 2.9 | 5 | 19.2 | 0.3 | 1.7 | 10.7 | 0 | 0 | linear | −6.4 |
4 | 4.7 | 5 | 93.2 | 3.6 | 13.1 | 70.8 | 1.7 | 0 | 42.2 | −4.2 |
5 | 7.7 | 5 | 91.3 | 3.9 | 12.8 | 76.9 | 1.2 | 0 | 64.6 | 3.5 |
6 | 4.7 | 0 | 6.9 | 0 | 0.6 | 0 | 0 | 0 | — | −6.3 |
7 | 4.7 | 2.5 | 65.8 | 1.2 | 4.4 | 55.4 | 0 | 0 | linear | −4.8 |
8 | 4.7 | 10 | 83.1 | 2.3 | 7.7 | 71.1 | 0.6 | 0 | 118 | −1.3 |
9 | 4.7 | 5(Fe) | 4.7 | 0 | 0.6 | 0 | 0 | 0 | — | −4.1 |
10 | 4.7 | 5(Au) | 7.1 | 0 | 0.6 | 0 | 0 | 0 | — | −6.5 |
11 | 4.7 | 5(Zn) | 4.1 | 0 | 0.7 | 0 | 0 | 0 | — | −3.4 |
12 | 8(Pd) c | 5 | 91.1 | 0 | 85.9 | 0 | 0 | 0 | — | −5.2 |
13 | 8(Pd) c | 5(Fe) | 18.2 | 0.1 | 12.2 | 0 | 0 | 0 | — | −6.0 |
14 | 8(Rh) c | — | 96.6 | 0.2 | 1.4 | 75.6 | 23.3 | 0 | 3.2 | +3.9 |
15 | 8(Rh) c | 5 | 99.6 | 0.2 | 17.2 | 54.4 | 30.0 | 7.7 | 1.1 | −2.7 |
Entry | Reactant | T (°C) | Conv. (%) | Yield (%) | l:b | δ(%) | ||||
---|---|---|---|---|---|---|---|---|---|---|
Alkane | Isomer | a | b | c | ||||||
1 | ![]() | 90 | 37.8 | 1.2 | 4.6 | 30.6 | 0 | 0 | linear | −1.4 |
2 | 90 b | 93.2 | 3.6 | 13.1 | 70.8 | 1.7 | 0 | 42.2 | −4.2 | |
3 | 120 c,d | 24.0 | 0.5 | 2.8 | 16.9 | 0 | 0 | linear | −3.9 | |
4 | 120 e | 26.0 | 0.2 | 4.1 | 20.5 | 0.9 | 0 | 22.8 | −0.3 | |
5 | ![]() | 90 | 27.1 | 2.5 | 3.0 | 18.5 | 0 | 0 | linear | −3.0 |
6 | 120 | 71.1 | 7.6 | 23.4 | 34.8 | 1.6 | 0 | 22 | −3.7 | |
7 | 120 c,d | 23.7 | 1.7 | 5.9 | 11.9 | 0.3 | 0 | 39.7 | −3.9 | |
8 | ![]() | 90 | 20.8 | 2.7 | 2.7 | 11.1 | 0 | 0 | linear | −4.3 |
9 | 120 | 72.5 | 7.0 | 29.1 | 29.9 | 1.5 | 0 | 20 | −4.9 | |
10 | 120 c,d | 23.1 | 2.2 | 7.1 | 11.1 | 0.3 | 0 | 37.0 | −2.3 | |
11 | ![]() | 90 f | 74.5 | 10.7 | 29.9 | 34.2 | 3.1 | 0 | 10.9 | +3.4 |
12 | 120 f | 65.4 | 4.9 | 6.8 | 56.9 | 2.9 | 0 | 19.6 | +5.1 | |
13 | 120 d,g | 31.8 | 5.3 | 6.5 | 21.0 | 1.1 | 0 | 19.6 | +2.0 | |
14 | 120 h | 85.6 | 12.5 | 50.2 | 23.9 | 2.7 | 0 | 8.8 | +3.8 | |
15 | 120 i | 56.4 | 3.8 | 3.0 | 49.0 | 2.0 | 0 | 25 | +1.4 | |
16 | ![]() | 90 b | 99.7 | 2.8 | 8.1 | 36.9 j 54.1 k | 0 | 0 | linear | +2.1 |
17 | ![]() | 90 b | 5.6 | 4.7 | 0 | 0 | 0 | 0 | — | −0.9 |
Table 2 Hydroformylation reaction of different alkenes over heterogeneous 4.7Pt-Sn/PS-PPh2 catalyst a.
Entry | Reactant | T (°C) | Conv. (%) | Yield (%) | l:b | δ(%) | ||||
---|---|---|---|---|---|---|---|---|---|---|
Alkane | Isomer | a | b | c | ||||||
1 | ![]() | 90 | 37.8 | 1.2 | 4.6 | 30.6 | 0 | 0 | linear | −1.4 |
2 | 90 b | 93.2 | 3.6 | 13.1 | 70.8 | 1.7 | 0 | 42.2 | −4.2 | |
3 | 120 c,d | 24.0 | 0.5 | 2.8 | 16.9 | 0 | 0 | linear | −3.9 | |
4 | 120 e | 26.0 | 0.2 | 4.1 | 20.5 | 0.9 | 0 | 22.8 | −0.3 | |
5 | ![]() | 90 | 27.1 | 2.5 | 3.0 | 18.5 | 0 | 0 | linear | −3.0 |
6 | 120 | 71.1 | 7.6 | 23.4 | 34.8 | 1.6 | 0 | 22 | −3.7 | |
7 | 120 c,d | 23.7 | 1.7 | 5.9 | 11.9 | 0.3 | 0 | 39.7 | −3.9 | |
8 | ![]() | 90 | 20.8 | 2.7 | 2.7 | 11.1 | 0 | 0 | linear | −4.3 |
9 | 120 | 72.5 | 7.0 | 29.1 | 29.9 | 1.5 | 0 | 20 | −4.9 | |
10 | 120 c,d | 23.1 | 2.2 | 7.1 | 11.1 | 0.3 | 0 | 37.0 | −2.3 | |
11 | ![]() | 90 f | 74.5 | 10.7 | 29.9 | 34.2 | 3.1 | 0 | 10.9 | +3.4 |
12 | 120 f | 65.4 | 4.9 | 6.8 | 56.9 | 2.9 | 0 | 19.6 | +5.1 | |
13 | 120 d,g | 31.8 | 5.3 | 6.5 | 21.0 | 1.1 | 0 | 19.6 | +2.0 | |
14 | 120 h | 85.6 | 12.5 | 50.2 | 23.9 | 2.7 | 0 | 8.8 | +3.8 | |
15 | 120 i | 56.4 | 3.8 | 3.0 | 49.0 | 2.0 | 0 | 25 | +1.4 | |
16 | ![]() | 90 b | 99.7 | 2.8 | 8.1 | 36.9 j 54.1 k | 0 | 0 | linear | +2.1 |
17 | ![]() | 90 b | 5.6 | 4.7 | 0 | 0 | 0 | 0 | — | −0.9 |
Sample | Path | R (Å) | N | ΔE0 (eV) | σ2 (10-3 Å2) | R factor (%) |
---|---|---|---|---|---|---|
Pt foil | Pt-Pt | 2.77+/−0.00 | 12 b | 7.9+/−0.3 | 5+/−0 | 0.2 |
PtSn2 | Pt-C/O | 2.02+/−0.01 | 7 c | 5.0+/−0.9 | 4+/−1 d | 1.4 |
Pt-Sn | 2.63+/−0.02 | 1.0+/−0.3 | 4+/−1 d | |||
Pt-(C)-Pt | 2.93+/−0.02 | 2.2+/−0.6 | 5+/−1 | |||
Pt(PPh3)2 | Pt-C/O | 2.03+/−0.02 | 4 c | 5.1+/−1.5 | 9+/−2 | 1.8 |
Pt-P | 2.25+/−0.02 | 1 c | 9+/−3 d | |||
Pt-Pt | 2.75+/−0.02 | 2.4+/−0.5 | 9+/−3 d | |||
PtSn2(PPh3)2 | Pt-C/O | 2.02+/−0.02 | 4 c | 4.4+/−1.4 | 9+/−3 d | 2.1 |
Pt-P | 2.35+/−0.02 | 1 c | 9+/−3 d | |||
Pt-Sn | 2.64+/−0.02 | 1.2+/−0.4 | 9+/−3 d | |||
Sn foil | Sn-Sn | 3.00+/−0.01 | 8 b | 5.2+/−0.7 | 10+/−1 | 0.5 |
PtSn2(PPh3)2 | Sn-C/O | 2.09+/−0.02 | 0.7+/−0.3 | 6.5+/−2.1 | 7+/−1 d | 1.1 |
Sn-Cl | 2.42+/−0.02 | 3 c | 7+/−1 d | |||
Sn-Pt | 2.66+/−0.05 | 0.5+/−0.1 | 7+/−1 d |
Table 3 EXAFS data fitting results of different homogeneous catalysts after hydroformylation reactions as well as of Pt foil and Sn foil reference samples a.
Sample | Path | R (Å) | N | ΔE0 (eV) | σ2 (10-3 Å2) | R factor (%) |
---|---|---|---|---|---|---|
Pt foil | Pt-Pt | 2.77+/−0.00 | 12 b | 7.9+/−0.3 | 5+/−0 | 0.2 |
PtSn2 | Pt-C/O | 2.02+/−0.01 | 7 c | 5.0+/−0.9 | 4+/−1 d | 1.4 |
Pt-Sn | 2.63+/−0.02 | 1.0+/−0.3 | 4+/−1 d | |||
Pt-(C)-Pt | 2.93+/−0.02 | 2.2+/−0.6 | 5+/−1 | |||
Pt(PPh3)2 | Pt-C/O | 2.03+/−0.02 | 4 c | 5.1+/−1.5 | 9+/−2 | 1.8 |
Pt-P | 2.25+/−0.02 | 1 c | 9+/−3 d | |||
Pt-Pt | 2.75+/−0.02 | 2.4+/−0.5 | 9+/−3 d | |||
PtSn2(PPh3)2 | Pt-C/O | 2.02+/−0.02 | 4 c | 4.4+/−1.4 | 9+/−3 d | 2.1 |
Pt-P | 2.35+/−0.02 | 1 c | 9+/−3 d | |||
Pt-Sn | 2.64+/−0.02 | 1.2+/−0.4 | 9+/−3 d | |||
Sn foil | Sn-Sn | 3.00+/−0.01 | 8 b | 5.2+/−0.7 | 10+/−1 | 0.5 |
PtSn2(PPh3)2 | Sn-C/O | 2.09+/−0.02 | 0.7+/−0.3 | 6.5+/−2.1 | 7+/−1 d | 1.1 |
Sn-Cl | 2.42+/−0.02 | 3 c | 7+/−1 d | |||
Sn-Pt | 2.66+/−0.05 | 0.5+/−0.1 | 7+/−1 d |
Fig. 2. The Fourier transform EXAFS (a,b) with k2-weighted magnitude and XANES (c,d) at Pt L3-edge or Sn K-edge of different homogenous catalysts, respectively.
|
[1] | Mu-Lin Li, Yi-Meng Xie, Jingting Song, Ji Yang, Jin-Chao Dong, Jian-Feng Li. Ammonia electrosynthesis on carbon-supported metal single-atom catalysts [J]. Chinese Journal of Catalysis, 2024, 60(5): 42-67. |
[2] | Ning Song, Jizhou Jiang, Shihuan Hong, Yun Wang, Chunmei Li, Hongjun Dong. State-of-the-art advancements in single atom electrocatalysts originating from MOFs for electrochemical energy conversion [J]. Chinese Journal of Catalysis, 2024, 59(4): 38-81. |
[3] | De-Gui Wu, Xiao-Gen Xiong, Zhong-Dong Zhao, Shu-Qin Song, Zhao-Bin Ding. Unravelling ligand topology effect on the binding of oxygen reduction reaction intermediates on Fe-Nx-C single-atom catalysts [J]. Chinese Journal of Catalysis, 2024, 59(4): 214-224. |
[4] | Junlei Zhang, Wencong Liu, Biao Liu, Xiaoguang Duan, Zhimin Ao, Mingshan Zhu. Is single-atom catalyzed peroxymonosulfate activation better? Coupling with metal oxide may be better [J]. Chinese Journal of Catalysis, 2024, 59(4): 137-148. |
[5] | Qian Zhang, Xunzhu Jiang, Yang Su, Yang Zhao, Botao Qiao. Catalytic propane dehydrogenation by anatase supported Ni single-atom catalysts [J]. Chinese Journal of Catalysis, 2024, 57(2): 105-113. |
[6] | Xiaolong Tang, Feng Li, Fang Li, Yanbin Jiang, Changlin Yu. Single-atom catalysts for the photocatalytic and electrocatalytic synthesis of hydrogen peroxide [J]. Chinese Journal of Catalysis, 2023, 52(9): 79-98. |
[7] | Jin-Nian Hu, Ling-Chan Tian, Haiyan Wang, Yang Meng, Jin-Xia Liang, Chun Zhu, Jun Li. Theoretical screening of single-atom electrocatalysts of MXene-supported 3d-metals for efficient nitrogen reduction [J]. Chinese Journal of Catalysis, 2023, 52(9): 252-262. |
[8] | Sikai Wang, Xiang-Ting Min, Botao Qiao, Ning Yan, Tao Zhang. Single-atom catalysts: In search of the holy grails in catalysis [J]. Chinese Journal of Catalysis, 2023, 52(9): 1-13. |
[9] | Lei Zhao, Zhen Zhang, Zhaozhao Zhu, Pingbo Li, Jinxia Jiang, Tingting Yang, Pei Xiong, Xuguang An, Xiaobin Niu, Xueqiang Qi, Jun Song Chen, Rui Wu. Integration of atomic Co-N5 sites with defective N-doped carbon for efficient zinc-air batteries [J]. Chinese Journal of Catalysis, 2023, 51(8): 216-224. |
[10] | Zheng-Qing Huang, Shu-Yue He, Tao Ban, Xin Gao, Yun-Hua Xu, Chun-Ran Chang. Mechanistic and microkinetic study of nonoxidative coupling of methane on Pt-Cu alloy catalysts: From single-atom sites to single-cluster sites [J]. Chinese Journal of Catalysis, 2023, 48(5): 90-100. |
[11] | Run Jiang, Zelong Qiao, Haoxiang Xu, Dapeng Cao. Defect engineering of Fe-N-C single-atom catalysts for oxygen reduction reaction [J]. Chinese Journal of Catalysis, 2023, 48(5): 224-234. |
[12] | Chao Nie, Xiangdong Long, Qi Liu, Jia Wang, Fei Zhan, Zelun Zhao, Jiong Li, Yongjie Xi, Fuwei Li. Facile fabrication of atomically dispersed Ru-P-Ru ensembles for efficient hydrogenations beyond isolated single atoms [J]. Chinese Journal of Catalysis, 2023, 45(2): 107-119. |
[13] | Syed Shoaib Ahmad Shah, Tayyaba Najam, Jiao Yang, Muhammad Sufyan Javed, Lishan Peng, Zidong Wei. Modulating the microenvironment structure of single Zn atom: ZnN4P/C active site for boosted oxygen reduction reaction [J]. Chinese Journal of Catalysis, 2022, 43(8): 2193-2201. |
[14] | Neng Li, Jiahe Peng, Zuhao Shi, Peng Zhang, Xin Li. Charge transfer and orbital reconstruction of non-noble transition metal single-atoms anchored on Ti2CTx-MXenes for highly selective CO2 electrochemical reduction [J]. Chinese Journal of Catalysis, 2022, 43(7): 1906-1917. |
[15] | Chun Zhu, Jin-Xia Liang, Yang-Gang Wang, Jun Li. Non-noble metal single-atom catalyst with MXene support: Fe1/Ti2CO2 for CO oxidation [J]. Chinese Journal of Catalysis, 2022, 43(7): 1830-1841. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||