Chinese Journal of Catalysis ›› 2024, Vol. 67: 166-175.DOI: 10.1016/S1872-2067(24)60148-8
• Article • Previous Articles Next Articles
Xu Zhanga,b,1, Wen-Jing Zhanga,1, Yan-Cheng Hua(), Zhi-Guang Zhangb(
), Jing-Pei Caoa(
)
Received:
2024-08-23
Accepted:
2024-09-16
Online:
2024-12-18
Published:
2024-11-30
Contact:
Yan-Cheng Hu, Zhi-Guang Zhang, Jing-Pei Cao
About author:
1Contributed equally to this work.
Supported by:
Xu Zhang, Wen-Jing Zhang, Yan-Cheng Hu, Zhi-Guang Zhang, Jing-Pei Cao. Catalytic production of fused tetracyclic high-energy-density fuel with biomass-derived cyclopentanone and benzoquinone[J]. Chinese Journal of Catalysis, 2024, 67: 166-175.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(24)60148-8
Typical HED fuel | Chemical structure | Petroleum feedstock | Density (g/mL) | Freezing point (°C) | Kinematic viscosity (cSt) | Combustion Heat (MJ/L) |
---|---|---|---|---|---|---|
JP-10 | | | 0.936 | ‒79 | 19 (‒40 °C) | 39.6 |
RJ-4 | | | 0.927 | ‒40 | 60 (‒40 °C) | 39.0 |
RJ-5 | | | 1.080 | 0 | — | 44.9 |
Table 1 The structure and property of typical petroleum-derived HED fuels.
Typical HED fuel | Chemical structure | Petroleum feedstock | Density (g/mL) | Freezing point (°C) | Kinematic viscosity (cSt) | Combustion Heat (MJ/L) |
---|---|---|---|---|---|---|
JP-10 | | | 0.936 | ‒79 | 19 (‒40 °C) | 39.6 |
RJ-4 | | | 0.927 | ‒40 | 60 (‒40 °C) | 39.0 |
RJ-5 | | | 1.080 | 0 | — | 44.9 |
Fig. 2. Effects of reaction conditions on the catalytic dehydration of CPDIOL 2. (a) The yield of CPDE 3 and SK 3’ as a function of different solvent. (b) The yield of CPDE 3 and SK 3’ as a function of different ionic liquid. (c) The yield of CPDE 3 and SK 3’ as a function of different catalyst. (d) The yield of CPDE 3 and SK 3’ as a function of different temperature. Reaction conditions: CPDIOL 2 (0.5 g), solvent (2.0 g), catalyst (10 wt%), T °C, 6 h. (a) A-15 (10 wt%), 120 °C. (b) A-15 (10 wt%), 120 °C. (c) [Hmim]Cl (2.0 g), 120 °C. (d) A-15 (10 wt%), [Hmim]Cl (2.0 g).
Fig. 3. The effect of catalyst dosage and recycling experiment of A-15/[Hmim]Cl. (a) The yield of CPDE 3 and SK 3’ as a function of catalyst dosage. (b) Reusability of A-15/[Hmim]Cl. (c) 1H NMR of used [Hmim]Cl after six runs. (d) 13C NMR of used [Hmim]Cl after six runs. Reaction conditions: CPDIOL 2 (0.5 g), [Hmim]Cl (2.0 g), A-15, 110 °C, 6 h.
Fig. 4. The interaction between CPDIOL 2 and [Hmim]Cl. (a) 1H NMR spectra of CPDIOL, [Hmim]Cl and their mixtures. (b) 13C NMR spectra of CPDIOL, [Hmim]Cl and their mixtures. (c) FT-IR spectra of CPDIOL, [Hmim]Cl and their mixtures. (d) The dehydration selectivity in strong polar solvents as a function of dosage of LiCl additive.
Fig. 6. Catalytic hydrodeoxygenation of D-A adduct 5. (a) Effect of H-type zeolites on the hydrodeoxygenation of D-A adduct 5. (b) Effect of metal/carbon (M/C) and Raney metals on the hydrodeoxygenation of D-A adduct 5. (c) Effect of temperature on the hydrodeoxygenation of D-A adduct 5. (d) The yield of fused tetracyclic fuel 6 over Pd/C and H-Y as a function of recycling time. Reaction conditions: D-A adduct 5 (1.0 mmol, 242.0 mg), M/C (5% metal content) or Raney metal (20 wt%), H-type zeolite (20 wt%), H2 (3.5 MPa), cyclohexane (2 mL), 15 h. (a) Pd/C, 200 °C. (b) H-Y, 200 °C. (c) Pd/C, H-Y. (d) Pd/C, H-Y, 200 °C.
HED fuel | Chemical structure | Density (g/mL) | Freezing point (°C) | Kinematic viscosity (cSt) | Combustion Heat (MJ/L) |
---|---|---|---|---|---|
Fuel 6 | ![]() | 0.966 | −67 | 12.4 (30 °C) | 43.1 |
JP-10 | ![]() | 0.936 | −79 | 19 (−40 °C) 7.3 (30 °C) | 39.6 |
RJ-4 | ![]() | 0.927 | −40 | 60 (−40 °C) | 39.0 |
Table 2 Properties of the synthesized biofuel and conventional petroleum-based HED fuels.
HED fuel | Chemical structure | Density (g/mL) | Freezing point (°C) | Kinematic viscosity (cSt) | Combustion Heat (MJ/L) |
---|---|---|---|---|---|
Fuel 6 | ![]() | 0.966 | −67 | 12.4 (30 °C) | 43.1 |
JP-10 | ![]() | 0.936 | −79 | 19 (−40 °C) 7.3 (30 °C) | 39.6 |
RJ-4 | ![]() | 0.927 | −40 | 60 (−40 °C) | 39.0 |
|
[1] | Lulu Sun, Shiyang Liu, Taifeng Liu, Dongqiang Lei, Nengchao Luo, Feng Wang. Engineering the coordination structure of Cu for enhanced photocatalytic production of C1 chemicals from glucose [J]. Chinese Journal of Catalysis, 2024, 63(8): 234-243. |
[2] | Lujie Liu, Ben Liu, Yoshinao Nakagawa, Sibao Liu, Liang Wang, Mizuho Yabushita, Keiichi Tomishige. Recent progress on bimetallic catalysts for the production of fuels and chemicals from biomass and plastics by hydrodeoxygenation [J]. Chinese Journal of Catalysis, 2024, 62(7): 1-31. |
[3] | Kui Jin, Meiyun Zhang, Penghua Che, Dongru Sun, Yong Wang, Hong Ma, Qiaohong Zhang, Chen Chen, Jie Xu. Solvent-scissors overcoming inert hydrogen bonding enable efficient oxidation of aromatic hydrocarbons under atmospheric oxygen [J]. Chinese Journal of Catalysis, 2024, 61(6): 322-330. |
[4] | Zhaohui Chen, Jun Deng, Yanmei Zheng, Wenjun Zhang, Lin Dong, Zupeng Chen. Modulation of ketyl radical reactivity to mediate the selective synthesis of coupling and carbonyl compounds [J]. Chinese Journal of Catalysis, 2024, 61(6): 135-143. |
[5] | Hongyu Qu, Wende Hu, Xiangcheng Li, Rui Xu, Xiao Han, Junjie Li, Yiqing Lu, Yingchun Ye, Chuanming Wang, Zhendong Wang, Weimin Yang. Efficient hydrogenolysis of 5-hydroxymethylfurfural to 2,5-dimethylfuran over Ni-C3N4 catalysts with ultra-low Ni loading [J]. Chinese Journal of Catalysis, 2024, 60(5): 253-261. |
[6] | Meiyun Zhang, Penghua Che, Hong Ma, Xin Liu, Shujing Zhang, Yang Luo, Jie Xu. Dual-metal synergy unlocking ROS-free catalysis for rapid aerobic oxidation of 5-hydroxymethylfurfural at room temperature [J]. Chinese Journal of Catalysis, 2024, 67(12): 144-156. |
[7] | Guang-Hui Lu, Jian Yu, Ning Li. A chemoenzymatic cascade for sustainable production of chiral N-arylated aspartic acids from furfural and waste [J]. Chinese Journal of Catalysis, 2024, 67(12): 102-111. |
[8] | Jielin Huang, Jie Wang, Haonan Duan, Songsong Chen, Junping Zhang, Li Dong, Xiangping Zhang. Constructing mesoporous CeO2 single-crystal particles in ionic liquids for enhancing the conversion of CO2 and alcohols to carbonates [J]. Chinese Journal of Catalysis, 2024, 66(11): 152-167. |
[9] | Ben Liu, Yoshinao Nakagawa, Mizuho Yabushita, Keiichi Tomishige. Promoting role of Ru species on Ir-Fe/BN catalyst in 1,2-diols hydrogenolysis to secondary alcohols [J]. Chinese Journal of Catalysis, 2024, 65(10): 89-102. |
[10] | Xin Liu, Maodi Wang, Yiqi Ren, Jiali Liu, Huicong Dai, Qihua Yang. Construction of modularized catalytic system for transfer hydrogenation: Promotion effect of hydrogen bonds [J]. Chinese Journal of Catalysis, 2023, 52(9): 207-216. |
[11] | Enara Fernandez, Laura Santamaria, Irati García, Maider Amutio, Maite Artetxe, Gartzen Lopez, Javier Bilbao, Martin Olazar. Elucidating coke formation and evolution in the catalytic steam reforming of biomass pyrolysis volatiles at different fixed bed locations [J]. Chinese Journal of Catalysis, 2023, 48(5): 101-116. |
[12] | Duozheng Ma, Xiangcheng Li, Chuang Liu, Caroline Versluis, Yingchun Ye, Zhendong Wang, Eelco T. C. Vogt, Bert M. Weckhuysen, Weimin Yang. SCM-36 zeolite nanosheets applied in the production of renewable p-xylene from ethylene and 2,5-dimethylfuran [J]. Chinese Journal of Catalysis, 2023, 47(4): 200-213. |
[13] | Hongfang Wang, Leitao Xu, Jingcheng Wu, Peng Zhou, Shasha Tao, Yuxuan Lu, Xianwen Wu, Shuangyin Wang, Yuqin Zou. Boosting 5-hydroxymethylfurfural electrooxidation in neutral electrolytes via TEMPO-enhanced dehydrogenation and OH adsorption [J]. Chinese Journal of Catalysis, 2023, 46(3): 148-156. |
[14] | Yuxuan Lu, Liu Yang, Yimin Jiang, Zhenran Yuan, Shuangyin Wang, Yuqin Zou. Engineering a localized electrostatic environment to enhance hydroxyl activating for electrocatalytic biomass conversion [J]. Chinese Journal of Catalysis, 2023, 53(10): 153-160. |
[15] | Wenjuan Zhang, Pei Jing, Juan Du, Shujie Wu, Wenfu Yan, Gang Liu. Interfacial-interaction-induced fabrication of biomass-derived porous carbon with enhanced intrinsic active sites [J]. Chinese Journal of Catalysis, 2022, 43(8): 2231-2239. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||