Chinese Journal of Catalysis ›› 2026, Vol. 82: 187-200.DOI: 10.1016/S1872-2067(25)64881-9
• Articles • Previous Articles Next Articles
Bei Hana,b, Chen Jina,b, Cuihong Luoa,b, Yuntao Liua,b, Zhichao Daia, Yunqiang Suna, Zibao Gana, Chong-Chen Wanga,c,*(
), Xiuwen Zhenga,b,*(
), Zunfu Hua,*(
)
Received:2025-07-26
Accepted:2025-08-29
Online:2026-03-18
Published:2026-03-05
Contact:
* E-mail: Supported by:Bei Han, Chen Jin, Cuihong Luo, Yuntao Liu, Zhichao Dai, Yunqiang Sun, Zibao Gan, Chong-Chen Wang, Xiuwen Zheng, Zunfu Hu. FeNi nanoparticles cooperate with single-atom sites to drive non-radical fenton-like catalysis: Dominant singlet oxygen and electron transfer pathways for efficient wastewater purification[J]. Chinese Journal of Catalysis, 2026, 82: 187-200.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(25)64881-9
Fig. 1. (a) Schematic of (FeNi)NPs,SAs-N-C synthesis. (b) PXRD patterns of catalysts. (c) TEM image. (d) SEM image. (e) HRTEM image. (f,g) AC-HAADF-STEM images of the (FeNi)NPs,SAs-N-C (atomic Fe and Ni species circled by red). (h) EDS mapping images of (FeNi)NPs,SAs-N-C.
Fig. 2. (a) XPS spectra of N 1s. (b) Fe K-edge XANES. (c) Ni K-edge XANES. (d) Fe K-edge FT-EXAFS spectra. (e) Ni K-edge FT-EXAFS spectra. (f) Fe K-edge EXAFS fitting curves. (g) Ni K-edge EXAFS fitting curves. (h,i) WT of (FeNi)NPs,SAs-N-C.
Fig. 3. Catalytic degradation of SMZ (a) and the corresponding reaction rate constants and removal efficiency (b) in various reaction systems. (c) Summary of experimental data for optimizing reaction conditions. (d) Effect of various anions and organics on SMZ removal by (FeNi)NPs,SAs-N-C+PMS system. (e) Effects of HA, SA and BSA on SMZ degradation in the FeNPs,SAs-N-C+PMS and (FeNi)NPs,SAs-N-C+PMS systems. (f) Cyclic experiment for the (FeNi)NPs,SAs-N-C+PMS system. (g) SMZ degradation in simulated wastewater prepared using different water environments with the (FeNi)NPs,SAs-N-C+PMS system. (h) Removal of various pollutants by the (FeNi)NPs,SAs-N-C+PMS system. (i) k values for degradation with different catalyst systems.
Fig. 4. (a) SMZ removal rate constants of various quenching systems. (b) Oxidation of trans-stilbene in the reactions of (FeNi)NPs,SAs-N-C+PMS and (c) FeNPs,SAs-N-C+PMS systems. (d) UV-vis spectra of DPBF in the MIL-88B(Fe)+PMS, MIL-88B(Fe,Ni)+PMS, FeNPs,SAs-N-C+PMS and (FeNi)NPs,SAs-N-C+PMS systems. (e) SMZ oxidation via a premixture of (FeNi)NPs,SAs-N-C and PMS at estimated time intervals. (f) ESR spectra for 1O2, ?OH, SO4?- and ?O2-. (g) Contributions of various ROS for SMZ degradation in the (FeNi)NPs,SAs-N-C+PMS and FeNPs,SAs-N-C+PMS systems.
Fig. 5. (a) Scheme of GOS with catalyst. (b) LSV of (FeNi)NPs,SAs-N-C electrodes under different conditions. (c) EIS spectra of MIL-88B(Fe), MIL-88B(Fe,Ni), FeNPs,SAs-N-C and (FeNi)NPs,SAs-N-C. (d) I-t curves. (e) Radar chart of SMZ degradation/PMS usage rate, COD and 1O2 yield of these catalysts. (f) Toxicity evaluation of intermediates. (g) Toxicity levels of the (FeNi)NPs,SAs-N-C+PMS system. Evaluation of SMZ removal using fresh (FeNi)NPs,SAs-N-C+PMS (h) and regenerated (FeNi)NPs,SAs-N-C+PMS (i) systems.
Fig. 6. (a) Front and side views of FeNPs,SAs-N-C and (FeNi)NPs,SAs-N-C. Blue, green, gray and gold spheres represent Fe, Ni, N and C atoms, respectively. (b) Eads, lO-O and Bader charges of PMS adsorbed on the FeNPs,SAs-N-C and (FeNi)NPs,SAs-N-C. Blue represent electron accumulation and yellow represent electron depletion. (c) Bader charges of FeNPs,SAs-N-C and (FeNi)NPs,SAs-N-C. Blue represent electron accumulation and yellow represent electron depletion. (d) Free energy profiles of 1O2 and FeIVNx=O in different systems. (e) PDOS of Fe atoms and N atoms and the d-band center of Fe sites in FeNPs,SAs-N-C and (FeNi)NPs,SAs-N-C. (f) Adsorption configuration and corresponding adsorption energy of FeIVN4=O on the amido gen sites (-NH2) of SMZ and FeIVN2=O on imino (-NH) sites of SMZ. (g) Schematic illustration of different attack pathways of SMZ at FeIVN4=O and FeIVN2=O sites.
|
| [1] | Yana Men, Yuzhou Jiao, Yanxing Zheng, Xiaoyan Wang, Shengli Chen, Peng Li. pH-dependent protic ionic liquid tuning effect on oxygen reduction activity of a molecular iron catalyst and its electrochemical interfacial origin [J]. Chinese Journal of Catalysis, 2026, 80(1): 258-269. |
| [2] | Qian Bai, Juanjuan Qi, Rongzhe Zhang, Zhiyuan Chen, Zihao Wei, Zhiyi Sun, Ziwei Deng, Xudong Yang, Qiangwei Li, Wenxing Chen, Lidong Wang. High-spin configuration of asymmetric CoN1C2 coordination for boosting d-p orbital hybridization in Fenton-like reactions [J]. Chinese Journal of Catalysis, 2025, 73(6): 334-346. |
| [3] | Mengyang Xu, Bingqing Chang, Jinze Li, Huiqin Wang, Pengwei Huo. Designed electron transport path via Fe-O-Ni atomic bond for high CO2 reduction [J]. Chinese Journal of Catalysis, 2025, 71(4): 114-127. |
| [4] | Xincheng Cao, Jiaping Zhao, Feng Long, Peng Liu, Yuguo Dong, Zupeng Chen, Junming Xu, Jianchun Jiang. Highly dispersed MoOx-Ru/C bimetallic catalyst for efficient hydrogenolysis of esters to alkanes [J]. Chinese Journal of Catalysis, 2025, 71(4): 256-266. |
| [5] | Yan Wang, Xiaorui Yan, Zeyang Sun, Jinjun Liu, Yiwen Wang, Chenchao Hu, Yilin Deng, Meng Xie, Jimin Xie, Wei Zhang, Yuanguo Xu. Synergistic catalysis of oxygen vacancy and S-scheme heterojunction in NiFe2O4‒x/NiS regulates peroxymonosulfate activation for enhanced photo-Fenton-like reaction [J]. Chinese Journal of Catalysis, 2025, 79(12): 186-204. |
| [6] | Liang Zhang, Jialiang Rui, Yiqian Li, Zhizhi Yang, Shiro Kubuki, Junhu Wang, Bofan Zhang. Engineering spin polarization of encaging Co nanoparticles in atomic CoNx sites evoke high valent Co species for boosting organic compound oxidation [J]. Chinese Journal of Catalysis, 2025, 77(10): 184-198. |
| [7] | Chen Xu, Di Song, Xinggang Liu, Fang Deng, Yongcai Zhang, Mingshan Zhu, Xijun Liu, Jianping Zou, Xubiao Luo. Quantitative correlation of Fe(III) electronic structure regulation in peroxymonosulfate activation via atomic cobalt doping AgFeO2 [J]. Chinese Journal of Catalysis, 2025, 77(10): 87-98. |
| [8] | Jiazang Chen. Semiconductor-cocatalyst interfacial electron transfer in actual photocatalytic reaction [J]. Chinese Journal of Catalysis, 2025, 68(1): 213-222. |
| [9] | Lujie Liu, Ben Liu, Yoshinao Nakagawa, Sibao Liu, Liang Wang, Mizuho Yabushita, Keiichi Tomishige. Recent progress on bimetallic catalysts for the production of fuels and chemicals from biomass and plastics by hydrodeoxygenation [J]. Chinese Journal of Catalysis, 2024, 62(7): 1-31. |
| [10] | Tao Wen, Sisheng Guo, Hengxin Zhao, Yuqi Zheng, Xinyue Zhang, Pengcheng Gu, Sai Zhang, Yuejie Ai, Xiangke Wang. Nano-MnO2 anchored on exfoliated MXene with exceptional and stable Fenton oxidation performance for organic micropollutants [J]. Chinese Journal of Catalysis, 2024, 61(6): 215-225. |
| [11] | Zehui Sun, Zhuangzhuang Lai, Yingying Zhao, Jianfu Chen, Wei Ma. Clarifying sequential electron-transfer steps in single-nanoparticle electrochemical process for identifying the intrinsic activity of electrocatalyst [J]. Chinese Journal of Catalysis, 2024, 60(5): 262-271. |
| [12] | Lu Zhang, Hourui Zhang, Dongyang Zhu, Zihan Fu, Shuangshi Dong, Cong Lyu. Construction of multivariate donor-acceptor heterojunction in covalent organic frameworks for enhanced photocatalytic oxidation: Regulating electron transfer and superoxide radical generation [J]. Chinese Journal of Catalysis, 2024, 66(11): 181-194. |
| [13] | Wen Zhang, Cai-Cai Song, Jia-Wei Wang, Shu-Ting Cai, Meng-Yu Gao, You-Xiang Feng, Tong-Bu Lu. Bidirectional host-guest interactions promote selective photocatalytic CO2 reduction coupled with alcohol oxidation in aqueous solution [J]. Chinese Journal of Catalysis, 2023, 52(9): 176-186. |
| [14] | Shuaiqi Meng, Zhongyu Li, Yu Ji, Anna Joelle Ruff, Luo Liu, Mehdi D. Davari, Ulrich Schwaneberg. Introduction of aromatic amino acids in electron transfer pathways yielded improved catalytic performance of cytochrome P450s [J]. Chinese Journal of Catalysis, 2023, 49(6): 81-90. |
| [15] | Jingyi Han, Jingqi Guan. Heteronuclear dual-metal atom catalysts for nanocatalytic tumor therapy [J]. Chinese Journal of Catalysis, 2023, 47(4): 1-31. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||