催化学报 ›› 2020, Vol. 41 ›› Issue (10): 1488-1497.DOI: 10.1016/S1872-2067(19)63409-1

• 论文 • 上一篇    下一篇

微波辅助合成缺陷型氧化钨及其光催化杀菌机理:氧空位的作用

古文泉a, 王万军a, 李桂英a, 谢皓晶a, 王保强b, 安太成a   

  1. a 广东工业大学环境健康与污染控制研究院, 环境科学与工程学院, 广东省环境催化与健康风险控制重点实验室, 广州市环境催化与污染控制重点实验室, 广东广州 510006;
    b 香港中文大学生命科学学院, 香港
  • 收稿日期:2019-12-22 修回日期:2020-01-31 出版日期:2020-10-18 发布日期:2020-08-15
  • 通讯作者: 王万军
  • 基金资助:
    国家自然科学基金(21607028,41425015,41573086);香港研究资助局基金(GRF14100115);广东省科技计划(2017A050506049);广东省珠江人才计划本土创新科研团队(2017BT01Z032);广东省教育厅创新团队项目(2017KCXTD012);广东特支计划科技创新领军人才(2016TX03Z094).

Microwave-assisted synthesis of defective tungsten trioxide for photocatalytic bacterial inactivation: Role of the oxygen vacancy

Wenquan Gua, Wanjun Wanga, Guiying Lia, Haojing Xiea, Po Keung Wongb, Taicheng Ana   

  1. a Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, Guangdong, China;
    b School of Life Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
  • Received:2019-12-22 Revised:2020-01-31 Online:2020-10-18 Published:2020-08-15
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (21607028, 41425015 and 41573086), the Research Grant Council of Hong Kong SAR Government (GRF14100115), Science and Technology Project of Guangdong Province (2017A050506049), Local Innovative and Research Teams Project of Guangdong Pearl River Talents Program (2017BT01Z032), Innovation Team Project of Guangdong Provincial Department of Education (2017KCXTD012), and Leading Scientific, Technical and Innovation Talents of Guangdong Special Support Program (2016TX03Z094).

摘要: 饮用水的微生物污染问题受到越来越多的重视,亟需发展更加安全的饮用水消毒技术.光催化消毒由于其利用取之不尽的太阳光作为能源的特点成为近年来最有潜力的"绿色"杀菌技术,然而传统TiO2光催化只能响应紫外光,并且目前已报道的可见光响应催化剂的杀菌效率仍然较低,不能满足应用需求.表面氧空位修饰是提高光催化剂性能的有效途径,已被证明可提高光催化降解、产氢及CO2还原性能,然而其对于光催化杀菌的增强机制少有研究.WO3由于具备可见光催化性能而受到较多关注,同时研究表明表面氧空位可提高WO3光吸收性能从而增强活性,但氧缺陷型WO3的光催化杀菌性能尚不明确.另一方面,氧缺陷WO3多是通过H2热还原制备或长时间水热反应制备,存在高温易爆、反应时间长等缺点.本文以WO3为例,利用微波辅助溶剂热法合成WO3-x,研究其在可见光下的光催化杀菌性能,探明氧空位对杀菌作用的增强机制,提出针对光催化杀菌的缺陷型催化剂制备策略.
研究发现,以乙醇作为溶剂WO3-x可在150oC经4h微波加热成功合成,相对于传统水热合成大幅缩短了制备时间.SEM/TEM表明其为纳米片形貌,UV-Vis DRS结果显示其带隙由2.53eV增加到2.61eV,主要是由于量子尺寸效应导致带隙蓝移,同时发现WO3-x在500-800nm范围内具有强可见光吸收,来源于氧空位导致的LSPR吸收.XPS表明W:O比为1:2.87,说明样品含有大量氧空位,并通过EPR测试进一步证实了氧空位的生成.光催化杀菌实验表明,WO3-x在可见光(λ﹥420nm)照射下可在150min内实现对6 log大肠杆菌的完全杀灭,其杀菌反应动力学符合Geeraerd模型,最大反应速率常数kmax为18.87h-1,是无氧空位WO3的15.2倍,充分说明表面氧空位修饰是大幅提高WO3光催化杀菌性能的有效途径.
进一步对光催化杀菌机理进行了深入研究,发现草酸钠(空穴湮灭剂)的加入可完全抑制杀菌反应,说明细菌灭活主要是空穴引起的氧化反应,同时利用表面氟化取代表面羟基实验发现经空穴氧化生成的表面羟基自由基·OHads也不是主要的活性物种,从而证实WO3-x体系中光催化杀菌主要是通过空穴直接氧化实现.XPS-VB测试表明合成的WO3-x相对于WO3其价带发生下移,导致光生空穴的氧化能力提高,同时电化学阻抗谱(EIS)及稳态荧光光谱(PL)证实WO3-x具有更高的光生电子-空穴分离率和界面电子传输效率.这些结果表明氧空位修饰不仅可以通过调控能带结构影响光生空穴氧化能力,而且可以提高载流子迁移率从而提高光催化杀菌性能.综上所述,本文提供了一种通过微波辅助调控半导体光催化剂表面氧空位的方法,并以WO3-x为例阐明了氧空位对光催化杀菌的增强机制,为今后定向开发缺陷型光催化剂,实现对病原微生物的高效控制和杀灭提供了新的研究思路.

 

关键词: 光催化, 三氧化钨, 微波, 氧空位, 杀菌

Abstract: Surface defect modulation has emerged as a potential strategy for promoting the photocatalytic activity of photocatalysts for various applications, while the impact of the oxygen vacancy on bacterial inactivation is still debated. In this study, oxygen vacancies were introduced to tungsten trioxide nanosheets (WO3-x) via a microwave-assisted route. The as-prepared WO3-x nanosheets exhibited excellent visible-light-driven photocatalytic activity toward E. coli K-12 inactivation, and 6 log orders of the bacterial cells could be completely inactivated within 150 min. The obtained bacterial inactivation rate constant was 15.2 times higher than that of pristine WO3 without oxygen vacancies, suggesting that the surface oxygen vacancy could significantly promote the bacterial inactivation efficiency. The mechanism study indicated that the inactivation of bacterial cells occurs via a direct h+ oxidation pathway. In addition, the role of the oxygen vacancy was studied in detail; the oxygen vacancy was found to not only promote interfacial charge separation but also tune the band structure of WO3, thereby leading to increased h+ oxidation power. Finally, a possible oxygen vacancy-dominated photocatalytic bacterial inactivation mechanism is proposed. This work is expected to offer new insights into the microwave-assisted synthesis of defective photocatalysts and the use of the oxygen vacancy for promoting photocatalytic antibacterial activities.

Key words: Photocatalysis, WO3, Microwave, Oxygen vacancy, Bacterial inactivation