催化学报 ›› 2020, Vol. 41 ›› Issue (1): 122-130.DOI: 10.1016/S1872-2067(19)63490-X

• 光催化产氢 • 上一篇    下一篇

基于S-型光催化机制CuInS2内嵌中空凹面氮化碳光催化分解H2O制H2

罗金华a,b, 林哲荇a, 赵艳a, 姜淑娟a,b, 宋少青a,b   

  1. a 宁波大学材料科学与化学工程学院, 浙江宁波 315211;
    b 宁波大学信息科学与工程学院, 浙江宁波 315211
  • 收稿日期:2019-07-01 修回日期:2019-07-24 出版日期:2020-01-18 发布日期:2019-10-22
  • 通讯作者: 姜淑娟, 宋少青
  • 基金资助:
    国家自然科学基金(21871155);宁波大学王宽城教育基金;宁波市泛3315计划.

The embedded CuInS2 into hollow-concave carbon nitride for photocatalytic H2O splitting into H2 with S-scheme principle

Jinhua Luoa,b, Zhexing Lina, Yan Zhaoa, Shujuan Jianga,b, Shaoqing Songa,b   

  1. a School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, Zhejiang, China;
    b Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo 315211, Zhejiang, China
  • Received:2019-07-01 Revised:2019-07-24 Online:2020-01-18 Published:2019-10-22
  • Supported by:
    Study was supported by the National Natural Science Foundation of China (21871155), the K. C. Wong Magna Fund in Ningbo University, Fan 3315 Plan, and Yongjiang Scholar Plan.

摘要: 光催化解离H2O合成H2是绿色可再生的太阳能光子能量转换策略之一.目前,增强光催化材料对太阳能光子的捕获并将之有效利用仍然是一个具有挑战性的课题.光催化解离H2O反应包括三个过程:太阳能光子能量促使光生电子在半导体材料带隙中的跃迁;光生电子定向传输;光生电子与吸附在半导体材料表面的H2O分子发生反应.第一过程需要强的太阳光子捕获能力以产生足够的光生载流子;第二、三过程在动力学上反映了光生载流子在各个竞争过程中能否有效利用的问题,如光生电子迁移与H2O作用的速度很慢(~μs),而电子与空穴的复合速度快(~ps).目前研究者很难协调半导体材料的电学和光学特性以满足光生载流子在热力学和动力学两方面的要求.g-C3N4是由C、N原子通过sp2杂化组成的二维π共轭体系.当g-C3N4结构偏离二维平面时,共轭体系的π电子由凹面迁移到凸面,促使凹、凸面形成表观电势差,有利于电子的定向传输.本文通过卷曲sp2杂化离域均三嗪体系偏离二维平面,得到空心凹面g-C3N4结构,便捷地优化了半导体的电子结构.将CuInS2嵌入生长于空心g-C3N4的凹面,所构成的半导体光催化材料CuInS2@C3N4展现了增强的光捕获能力,以及电子定向传输转移能力.结合XPS、光电流测试、电化学阻抗谱、稳态及瞬态荧光等表征手段揭示空心g-C3N4凹、凸面表观电势差驱动光生电子以S-型光催化作用机制从CuInS2的Cu 2p向g-C3N4的N 1s的路径转移.因而,所构建的CuInS2@C3N4在可见光激发下产氢效率提高到373μmol·h-1·g-1,其产氢效率分别是二维平面g-C3N4负载1 wt% Pt和3 wt% Pd效率的1.57倍和1.35倍,表明空心g-C3N4凹、凸面电势差可以显著地促进光生电子分离和利用率,从而提高光催化解离水制氢效率.本文可增强g-C3N4的可持续太阳能转换性能,也适用于其他半导体材料以替代贵金属光催化体系,降低光催化产氢技术成本,促进光催化技术的应用.

关键词: 空心氮化碳, 产氢, 太阳光吸收, 电子定向传输, 表观电势差

Abstract: It is still a great challenge to effectively optimize the electronic structure of photocatalysts for the sustainable and efficient conversion of solar energy to H2 energy. To resolve this issue, we report on the optimization of the electronic structure of hollow-concave carbon nitride (C3N4) by deviating the sp2-hybridized structure of its tri-s-triazine component from the two-dimensional plane. The embedded CuInS2 into C3N4 (CuInS2@C3N4) demonstrates an increased light-capturing capability and the promoted directional transfer of the charge carrier. Research results reveal that the hollow structure with an apparent potential difference between the concave and convex C3N4 drives the directional transfer of the photoinduced electrons from the Cu 2p orbital of CuInS2 to the N 1s orbital of C3N4 with the S-scheme principle. The H2 evolution efficiency over CuInS2@C3N4 is up to 373 µmol?h-1 g-1 under visible irradiation, which is 1.57 and 1.35 times higher than those over the bulk g-C3N4 with 1 wt% Pt (238 µmol?h-1 g-1) and g-C3N4 with 3 wt% Pd (276 µmol?h-1 g-1), respectively. This suggests that the apparent potential difference of the hollow C3N4 results in an efficient reaction between the photogenerated electrons and H2O. This work supplies a new strategy for enhancing the sustainable solar conversion performance of carbon nitride, which can also be suitable for other semiconductors.

Key words: Hollow carbon nitride, Hydrogen evolution, Solar light absorption, Directional charge transfer, Apparent potential difference