催化学报 ›› 2022, Vol. 43 ›› Issue (3): 782-792.DOI: 10.1016/S1872-2067(21)63864-0

• 论文 • 上一篇    下一篇

具有三维光催化活性表面的Cu掺杂ZnS纳米框架材料用于太阳能光催化产氢

黄俊敏, 陈健民, 刘望喜, 张静文, 陈俊英*(), 李映伟#()   

  1. 华南理工大学化学与化工学院, 制浆造纸工程国家重点实验室, 广东广州 510640
  • 收稿日期:2021-04-17 修回日期:2021-04-17 出版日期:2022-03-18 发布日期:2022-02-18
  • 通讯作者: 陈俊英,李映伟
  • 基金资助:
    国家自然科学基金(21825802);国家自然科学基金(21706078);中央高校基本科研业务费(2019PY11);中央高校基本科研业务费(2019MS038);广州市科技计划项目(201804020009);广州市珠江科技新星计划(201906010001);广东省自然科学基金(2016A030310413);广东省自然科学基金(2016A050502004);广东省自然科学基金(2017A030312005);广东省自然科学基金(2017A030310029)

Copper-doped zinc sulfide nanoframes with three-dimensional photocatalytic surfaces for enhanced solar driven H2 production

Junmin Huang, Jianmin Chen, Wangxi Liu, Jingwen Zhang, Junying Chen*(), Yingwei Li#()   

  1. State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, Guangdong, China
  • Received:2021-04-17 Revised:2021-04-17 Online:2022-03-18 Published:2022-02-18
  • Contact: Junying Chen, Yingwei Li
  • Supported by:
    National Natural Science Foundation of China(21825802);National Natural Science Foundation of China(21706078);Fundamental Research Funds for the Central Universities(2019PY11);Fundamental Research Funds for the Central Universities(2019MS038);Science and Technology Program of Guangzhou(201804020009);Pearl River S&T Nova Program of Guangzhou(201906010001);Guangdong Natural Science Foundation(2016A030310413);Guangdong Natural Science Foundation(2016A050502004);Guangdong Natural Science Foundation(2017A030312005);Guangdong Natural Science Foundation(2017A030310029)

摘要:

太阳能转化为化学能被认为是当前能源和环境危机最具潜力的解决方案之一, 但在设计和制备高效的、可持续的半导体光催化剂方面仍需研究者不懈努力. 对半导体的组成、形貌进行重塑改性以提高光催化效率依然具有挑战性. 本文通过结合替位掺杂、酸性环境化学刻蚀和硫化三步策略制备了Cu掺杂的ZnS纳米框架材料, 旨在提高太阳能光催化产氢反应中的光利用率和电荷分离/迁移效率. 在制备过程中, Cu掺杂的ZIF-8菱形十二面体通过各向异性化学刻蚀转变为具有三维光催化活性表面的中空Cu-ZIF-8纳米框架, 进一步硫化转换为Cu掺杂ZnS(Cu-ZnS)纳米框架材料. 通过调控Cu-ZIF-8中Cu的掺杂量, 制备了一系列x%Cu-ZnS材料(x代表Cu2+/Zn2+的摩尔比, 分别为0, 0.5, 1, 2.5和5), 并考察了其在模拟太阳光激发下的光解水产氢性能.
通过对合成的x%Cu-ZnS纳米框架材料进行X射线衍射、扫描电子显微镜、透射电子显微镜以及X射线光电子能谱表征结果表明, Cu2+离子已成功地掺杂到ZnS纳米框架的晶格中. 在模拟太阳光照射下, Cu-ZnS纳米框架材料的光催化性能比纯ZnS和具有其他不同形貌的Cu-ZnS材料大幅提升. Cu的掺杂量对于调整Cu-ZnS的电子结构非常重要, 有助于增加光响应范围和改善电荷迁移效率. 在不同Cu/Zn摩尔比的x%Cu-ZnS中, 1%Cu-ZnS纳米框架材料具有最高的产氢性能, 在无助催化剂的条件下其光催化性能可达8.30 mmol h-1g-1. Cu-ZnS纳米材料因其独特的空心框架结构表现出反应物分子的三维可及性、较多的光催化活性位点、较大比表面积、较高电荷迁移率和较短的电荷迁移距离等优异特性. 因此, 在相同反应条件下, 1%Cu-ZnS纳米框架材料的光催化性能较大幅优于块状1%Cu-ZnS材料和空心1%Cu-ZnS材料. 1%Cu-ZnS纳米框架材料还具有优异的光解水产氢循环稳定性, 对循环25 h反应后样品进行X射线衍射和扫描电子显微镜表征, 表明其晶体结构和形貌结构未发生明显改变. 紫外漫反射、瞬态光电流响应、时间分辨荧光光谱和电化学交流阻抗等表征结果表明, Cu-ZnS纳米框架材料能够有效地将光吸收范围拓展到可见光甚至红外区域, 并能够有效促进光生电子/空穴的分离和迁移.
本文认为Cu-ZnS纳米框架材料光催化性能的大幅提升主要是由于其具备较好的Cu掺杂量、较大的比表面和开放的框架结构, 使其具有更多的反应活性位点、更高效的光生电荷的分离和迁移率和更高的光利用率. 综上, 本文制备的Cu-ZnS纳米框架结构策略可为设计具有独特形貌结构和组分的半导体光催化剂提供一定的借鉴.

关键词: 金属有机骨架, 太阳能-化学能能量转换, 金属硫化物, 产氢, 光催化

Abstract:

Solar-to-chemical energy conversion is perceived as one of the most potential solutions to the current energy and environmental crisis, yet requires major scientific endeavors on the development of efficient and sustainable photocatalysts. Remolding the composition and morphology of a semiconductor jointly for the purpose of improving photocatalysis efficiency remains challenging. Herein, we rationally fabricated Cu-doped ZnS nanoframes via a simple conjunct strategy of substitutional doping, chemical acidic etching, and sulfidation, aiming at enhancing the light utilization and charge separation/transfer efficiency for solar-light-driven hydrogen generation. Cu-doped zeolitic imidazolate framework-8 (ZIF-8) rhombic dodecahedrons are transformed to hollow Cu-ZIF-8 nanoframes converted to Cu-ZnS nanoframes with three-dimensional photocatalytic active surfaces via anisotropic chemical etching, which is further converted to Cu-ZnS nanoframes. By combining the merits of optimal heteroatom doping and frame-like open architecture, the obtained 1%Cu-doped ZnS nanoframe exhibits high photocatalytic activity under solar light irradiation with improved hydrogen production rate up to 8.30 mmol h-1g-1 and excellent stability in the absence of cocatalysts, which is significantly improved in comparison with those of the bare ZnS and Cu-ZnS with different morphologies. This work inspired by merging the merits of metal doping and anisotropic chemical etching may shed light on the rational design and fabrication of advanced photocatalysts.

Key words: Metal-organic frameworks, Solar-to-chemical energy conversion, Metal sulfides, Hydrogen production, Photocatalysis