催化学报 ›› 2020, Vol. 41 ›› Issue (9): 1337-1347.DOI: 10.1016/S1872-2067(20)63580-X

• 论文 • 上一篇    下一篇

利用实验测量的Pd表面d带电荷密度描述喹啉催化加氢活性

李顺林, 王丽丽, 吴萌萌, 孙雅飞, 朱小娟, 万颖   

  1. 上海师范大学化学系, 资源化学教育部重点实验室, 上海市稀土功能材料重点实验室, 上海 200234
  • 收稿日期:2020-01-15 修回日期:2020-02-21 出版日期:2020-09-18 发布日期:2020-08-08
  • 通讯作者: 万颖
  • 基金资助:
    国家自然科学基金(21773156);教育部"创新团队发展计划"滚动支持(PCSIRT_IRT_16R49);国际资源化学联合实验室(IJLRC);上海市科委基础研究重点项目(17JC1404200);上海市部分地方院校能力建设专项(19070502700);上海高校高峰高原学科建设计划.

Measurable surface d charge of Pd as a descriptor for the selective hydrogenation activity of quinoline

Shunlin Li, Lili Wang, Mengmeng Wu, Yafei Sun, Xiaojuan Zhu, Ying Wan   

  1. The Education Ministry Key Laboratory of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, and Department of Chemistry, Shanghai Normal University, Shanghai 200234, China
  • Received:2020-01-15 Revised:2020-02-21 Online:2020-09-18 Published:2020-08-08
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (21773156), the Ministry of Education of China (PCSIRT_IRT_16R49), the International Joint Laboratory on Resource Chemistry of China (IJLRC), the Shanghai Sci. & Tech. and Edu. Committee (17JC1404200, 19070502700), and the Shanghai Gaofeng & Gaoyuan Project for University Academic Program Development.

摘要: 杂环化合物如喹啉等在Pd表面发生较强的化学吸附,占据活性位,导致钯炭催化剂活性低.因此,需要解决的关键科学问题之一是催化剂电子结构与表面吸附、反应活性的关联,这也是精准设计和调控催化材料结构的科学基础.本文针对喹啉选择加氢制1,2,3,4-四氢喹啉反应,利用有序介孔炭载配位结构精准调控的金钯合金作为模型催化剂,描述金属d带电子特性对吸附络合物稳定化能和催化活性的决定性影响.在原子水平确认了AuPd纳米催化剂具有与块体合金相似的结构,排除了共晶体或核壳结构.通过调变Au和Pd浓度,实现了Pd-Au配位数由0-8的精确调控.利用XPS和XANES测量了Pd位点上d带和非dsp,主要是s)带得失电子数,将其定义为d带电荷密度(d charge),发现其与Au-Pd配位数密切相关.在喹啉选择加氢反应中,Au50Pd50和Au67Pd33催化剂的活性最高,与纯Pd催化剂相比,活性提高了11倍.进一步将合金电子结构与反应活性相关联发现,合金催化剂中Pd位点d带电荷密度与反应物生成活性络合物的活化熵(ΔS0*)和转化频率(TOFPd)成线性相关.有序介孔炭载AuPd合金催化剂具有很高的稳定性,在反应中未见金属表面偏析、聚集和流失.金属位点d带电荷密度描述符为含强吸附质反应中高性能催化剂的设计提供了新原理.

关键词: d带电荷密度, 金钯合金, 活化熵, 喹啉, 加氢

Abstract: AuPd nanoalloys with tunable Pd concentrations have been synthesized and used as model catalysts. They have been directly imaged by high-angle annular dark-field scanning transmission electron microscopy and investigated by thorough analyses of their extended X-ray absorption fine structure, X-ray absorption near-edge structure, X-ray diffraction and X-ray photoelectron spectroscopy measurements. The bimetallic nanoparticles are embedded in a carbonaceous matrix and have almost an identical structure at the atomic level and the same electronic properties as AuPd bulk alloys with the same compositions. The d-electron increase at surface Pd sites is determined by the Pd concentration of the alloy. Similarly, their activation entropy and catalytic activity for the hydrogenation of quinoline is related to the Pd concentration, with Au50Pd50 the most active of the alloys investigated. An almost 11 times higher activity was achieved compared to a pure Pd catalyst. The experimentally measurable surface d charge at the Pd sites in the AuPd was found to linearly correlate with the activation entropy and catalytic activity for the hydrogenation of quinoline. The alloy structure is stable, showing negligible metal segregation, dissolution-redeposition and aggregation during the hydrogenation process which involves strong adsorption.

Key words: Surface d charge, AuPd alloy, Activation entropy, Quinoline, Hydrogenation