催化学报 ›› 2025, Vol. 73: 196-204.DOI: 10.1016/S1872-2067(25)64711-5

• 论文 • 上一篇    下一篇

长烷基链功能化修饰铜纳米线电还原CO2高选择性制乙烯

李晓寒a,b,c, 张博雯a, 熊晚枫a, 李泽a,b,c, 向小宇a,b,c, 张思颖a,b,c, 司端惠a,d,e, 李红芳a,d,e(), 曹荣a,c,d,e   

  1. a中国科学院福建物质结构研究所, 结构化学国家重点实验室, 福建福州 350002
    b福建师范大学化学与材料科学学院, 福建福州 350007
    c中国科学院大学福建学院, 福建福州 350002
    d中国光电信息福建省科技创新实验室, 福建福州 350108
    e中国科学院大学, 北京 100049
  • 收稿日期:2025-01-22 接受日期:2025-04-02 出版日期:2025-06-18 发布日期:2025-06-12
  • 通讯作者: *电子信箱: hongfangli@fjirsm.ac.cn (李红芳).
  • 基金资助:
    国家重点研发计划(2021YFA1501500);国家重点研发计划(2022YFA1505700);国家重点研发计划(2023YFA1508300);国家自然科学基金(22171265);国家自然科学基金(22201286);国家自然科学基金(22220102005);国家自然科学基金(22033008);福建省光电信息科技创新实验室(2021ZZ103);CNMGE平台及NSCC-TJ开放科研基金;CSTCloud开放科学推进计划2023

Highly selective CO2 electroreduction to ethylene on long alkyl chains-functionalized copper nanowires

Xiao-Han Lia,b,c, Bo-Wen Zhanga, Wan-Feng Xionga, Ze Lia,b,c, Xiao-Yu Xianga,b,c, Si-Ying Zhanga,b,c, Duan-Hui Sia,d,e, Hong-Fang Lia,d,e(), Rong Caoa,c,d,e   

  1. aState Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, China
    bCollege of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, Fujian, China
    cFujian College, University of the Chinese Academy of Sciences, Fuzhou, 350002, Fujian, China
    dFujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, Fujian, China
    eUniversity of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2025-01-22 Accepted:2025-04-02 Online:2025-06-18 Published:2025-06-12
  • Contact: *E-mail: hongfangli@fjirsm.ac.cn (H.-F. Li).
  • Supported by:
    National Key Research and Development Program of China(2021YFA1501500);National Key Research and Development Program of China(2022YFA1505700);National Key Research and Development Program of China(2023YFA1508300);National Natural Science Foundation of China(22171265);National Natural Science Foundation of China(22201286);National Natural Science Foundation of China(22220102005);National Natural Science Foundation of China(22033008);Fujian Science& Technology Innovation Laboratory for Optoelectronic Information of China(2021ZZ103);Open Research Fund of CNMGE Platform & NSCC-TJ;Open Science Promotion Plan 2023 of CSTCloud

摘要:

电化学还原二氧化碳(CO2RR)是关闭碳循环并有可能将CO2转化为有价值的化学品和燃料的一个具有吸引力的途径. Cu是目前能够高效催化CO2RR生成多碳产物的过渡金属. 然而, 由于C-C耦合动力学缓慢, Cu基催化剂的高选择性生成C2+产物仍然是一个挑战. 为了提高C-C的偶联性, 研究者们合理设计各种Cu基催化剂并进行了大量的研究, 其中, 有许多关于分子修饰Cu基催化剂在CO2RR中的报道, 但大多数研究都集中在分子的内在性质及其对CO2RR过程的影响上. 但分子修饰后Cu表面电子结构变化, 以及这些变化如何影响CO2RR活性, 仍未得到充分的探讨. 因此, 要全面了解有机分子修饰后C-C偶联的机理, 还需要更深入的认识.

本文成功引入了一系列不同末端基团-RH (R = S, N, O)的十八烷基链修饰Cu NWs催化剂(命名为Cu-RH), 并研究了CO2RR中功能化长烷基链-中间体-Cu-RH催化剂性能之间的构效关系. 透射电镜等结果证实了十八烷基链的成功修饰并在Cu NWs表面覆盖了一层无定形长链物质, X射线衍射证明了修饰后只影响Cu的表面并不影响Cu的晶面, X射线光电子能谱、X射线吸收近边结构和扩展X射线吸收精细结构等结果证实了修饰后的Cu表面具有Cu0和Cu+共存的状态, 其中S与Cu表面具有较强的配位作用. 十八烷基链修饰后, 催化剂的疏水性大大提高, 析氢反应也得到有效抑制. 所得Cu-SH催化剂的FE (C2H4)高达53%, 优于其他催化剂(Cu-NH和Cu-OH). 原位表征和理论计算结果表明, *CO中间体在Cu-SH表面更容易呈现顶式吸附的*COtop状态, 在不同可能的偶联步骤中Cu-SH均表现出最低的耦合能垒, 说明Cu-SH界面独特的电子结构能够有效促进C-C耦合的发生, 这种长有机分子链以独特的方式与Cu表面相互作用, 改变了Cu表面的电子结构, 增强了对CO2的吸附, 并调节了*CO中间体的吸附构型. Cu-SH催化界面顶式吸附的*COtop中间体使Cu-SH表现出最高的电荷密度, 降低了*CO-*CO偶联的反应能垒, 促进*OCCO中间体的形成, 从而提高了对C2H4生成的选择性, 为设计具有高CO2催化活性和C2H4选择性的高效Cu基催化剂提供了一种有希望的策略.

综上所述, 本工作阐明了功能化长链有机分子-中间体-CO2RR转化为C2H4的性能之间的内在关系, 为优化目标产物的关键反应中间体铺平了新的道路; 有可能激发对可持续能源应用的高效催化剂的进一步研究, 也为实现高效的CO2电催化剂提供了新的方向.

关键词: CO2电还原, 铜纳米线, 长烷基链修饰, *CO顶式吸附, 乙烯

Abstract:

Electrochemical reduction of carbon dioxide (CO2RR) is a promising approach to complete the carbon cycle and potentially convert CO2 into valuable chemicals and fuels. Cu is unique among transition metals in its ability to catalyze the CO2RR and produce multi-carbon products. However, achieving high selectivity for C2+ products is challenging for copper-based catalysts, as C-C coupling reactions proceed slowly. Herein, a surface modification strategy involving grafting long alkyl chains onto copper nanowires (Cu NWs) has been proposed to regulate the electronic structure of Cu surface, which facilitates *CO-*CO coupling in the CO2RR. The hydrophobicity of the catalysts increases greatly after the introduction of long alkyl chains, therefore the hydrogen evolution reaction (HER) has been inhibited effectively. Such surface modification approach proves to be highly efficient and universal, with the Faradaic efficiency (FE) of C2H4 up to 53% for the optimized Cu-SH catalyst, representing a significant enhancement compared to the pristine Cu NWs (30%). In-situ characterizations and theoretical calculations demonstrate that the different terminal groups of the grafted octadecyl chains can effectively regulate the charge density of Cu NWs interface and change the adsorption configuration of *CO intermediate. The top-adsorbed *CO intermediates (*COtop) on Cu-SH catalytic interface endow Cu-SH with the highest charge density, which effectively lowers the reaction energy barrier for *CO-*CO coupling, promoting the formation of the *OCCO intermediate, thereby enhancing the selectivity towards C2H4. This study provides a promising method for designing efficient Cu-based catalysts with high catalytic activity and selectivity towards C2H4.

Key words: CO2 electroreduction, Copper nanowires, Alkyl chain modification, Top-adsorption of *CO, Ethylene