催化学报 ›› 2025, Vol. 78: 47-74.DOI: 10.1016/S1872-2067(25)64807-8
曹瑞麟a, 潘园a, 张贤胜a, 黄馨怡a, 李腾a, 刘晟a, 王云泽a, 唐山青a, 邵彬彬b,*(), 刘智峰a,*(
)
收稿日期:
2025-05-06
接受日期:
2025-07-16
出版日期:
2025-11-18
发布日期:
2025-10-14
通讯作者:
*电子信箱: shaobb@hnu.edu.cn (邵彬彬),
zhifengliu@hnu.edu.cn (刘智峰).
基金资助:
Ruilin Caoa, Yuan Pana, Xiansheng Zhanga, Xinyi Huanga, Teng Lia, Sheng Liua, Yunze Wanga, Shanqing Tanga, Binbin Shaob,*(), Zhifeng Liua,*(
)
Received:
2025-05-06
Accepted:
2025-07-16
Online:
2025-11-18
Published:
2025-10-14
Contact:
*E-mail: shaobb@hnu.edu.cn (B. Shao), zhifengliu@hnu.edu.cn (Z. Liu).
About author:
Binbin Shao (School of Design, Hunan University) received his B.A. degree from Jiangxi University of Science and Technology (China) in 2015, and Ph.D. degree from College of Environmental Science and Engineering, Hunan University in 2020. He carried out postdoctoral research at College of Environmental Science and Engineering in Hunan University (China) from 2020 to 2023. Since the end of 2023, he has been working in School of Design, Hunan University. His research interests currently focus on wastewater treatment, advanced oxidation processes, solid waste treatment and resource utilization, life-cycle assessment, sustainable agriculture, sustainable design, etc. He has coauthored more than 70 peer-reviewed papers, with the total citations of these papers exceeding 8000 times, and his H-index is 52. He was invited as a Young Editorial Board Member of Eco-Environment & Health and Carbon Neutralization. He has been included in the list of World’s Top 2% Scientists from 2021-2024.Supported by:
摘要:
随着工业化进程的加速及环境污染问题的日益严峻, 传统单一处理技术(如吸附、膜分离、生物降解等)在应对高毒性、难降解的新兴污染物(如抗生素、多环芳烃等)时, 显现出明显局限性. 光催化技术虽能利用太阳能实现污染物矿化, 但单一光催化过程中存在快速且不受控的化学反应, 常导致有害副产物积累和过度氧化残留物的产生. 此外, 仅依赖生物降解也难以有效降解高浓度、结构复杂的新兴污染物. 因此, 光催化与生物降解的协同技术(光催化与生物降解耦合(ICPB)系统、光催化微生物燃料电池(PMFCs))应运而生. 这类技术通过整合两者的优势, 突破单一技术的性能瓶颈, 提供了经济高效、环境友好且可持续的解决方案, 成为环境修复领域的研究热点.
本文系统地介绍了ICPB系统与PMFCs系统的研究进展. 首先概述了ICPB系统通过多孔载体实现光催化剂与微生物的协同作用: 光催化剂在光照下产生的活性氧物种(ROS)可将难降解污染物转化为中间产物, 或直接氧化为CO2和H2O; 生物膜则进一步将中间产物矿化为CO2和H2O, 即解决了光催化副产物积累与生物降解效率低的问题, 也提高了污染物去除效率. 该系统通过载体保护生物膜免受光催化氧化损伤, 同时利用微生物代谢产物促进光催化反应的持续进行. PMFCs系统则进一步将光催化与电化学过程结合, 实现能源回收与环境治理的双重功能. 该系统通过光生电子的定向传递与微生物代谢的协同作用, 显著提升了污染物的降解速率与能量转化效率. 随后, 针对系统优化, 研究重点围绕PMFCs的类型、ICPB载体的选择、光催化剂优化及微生物群落调控展开. 文中详细介绍了PMFCs系统的四个类型(生物阳极-光阴极、光阳极-生物阴极、ICPB阳极-阴极、光阳极-生物阳极-阴极)及其应用. 探讨了ICPB系统中常用载体(聚氨酯海绵)与生物相容性高的载体(生物质材料)等的实际应用. 概括了光催化剂的优化策略, 主要包含: (1)元素掺杂, 调整光催化剂的电子特性, 实现带隙缩小、光捕获增强和氧化还原电位调制; (2)半导体复合, 通过促进定向载流子转移来提高电荷分离和量子效率. 异质结的构建, 增强可见光吸收并促进有效的电子-空穴对分离; (3)表面修饰, 通过引入官能团、纳米颗粒或化学键来优化光吸收、电荷传输、活性位点密度和稳定性. 微生物群落的调控则通过驯化富集菌群或构建人工合成菌群, 提升污染物降解效率. 其后, 概述了ICPB系统与PMFCs在污染物去除方面的实际应用. 最后总结了光催化与生物降解协同技术所面临的挑战和未来的研究方向.
未来研究可以从以下方向突破: 加强跨学科合作, 开发低成本、长寿命的光催化材料, 探索新型反应器设计, 深化对光催化-生物协同机制的理解, 并借助人工智能与大数据技术优化工艺参数. 例如, 通过机器学习预测污染物降解路径, 动态调控光催化-生物协同过程; 开发兼具光催化活性与导电性的三维多孔载体, 提升传质效率与微生物附着能力等. 希望本文能够为构建高效实用的光催化-生物降解协同体系提供借鉴.
曹瑞麟, 潘园, 张贤胜, 黄馨怡, 李腾, 刘晟, 王云泽, 唐山青, 邵彬彬, 刘智峰. 光催化与生物降解协同系统在环境修复中的应用: 综述[J]. 催化学报, 2025, 78: 47-74.
Ruilin Cao, Yuan Pan, Xiansheng Zhang, Xinyi Huang, Teng Li, Sheng Liu, Yunze Wang, Shanqing Tang, Binbin Shao, Zhifeng Liu. The application of photocatalysis and biodegradation synergistic systems in environmental remediation: A review[J]. Chinese Journal of Catalysis, 2025, 78: 47-74.
Fig. 2. Number of articles published between 2010 and 2024 by searching the “web of science” for the keywords photocatalysis and biodegradation, as well as ICPB systems and PMFCs systems.
Fig. 3. (a) Schematic representation of possible mechanisms of action in the ICPB system. (b) Mechanism of action of phenol degradation by the ICPB system under visible light. Reproduced with permission from Ref. [34]. Copyright 2016, Elsevier.
Fig. 4. (a) Basic principle of semiconductor cathode photocatalysis. Reproduced with permission from Ref. [63]. Copyright 2016, Elsevier. (b) Schematic diagram of the possible mechanism of a two-compartment photoanode-biocathode PMFCs system. (c) Schematic diagram of the PMFCs system removing nutrients N and P. Reproduced with permission from Ref. [65]. Copyright 2019, Elsevier. (d) Mechanism of tungsten-based materials for the reduction of Cr(VI) in PMFCs. Reproduced with permission from Ref. [66]. Copyright 2023, Elsevier.
Fig. 5. Sponge carrier microscopy images: before photocatalyst loading (a), after photocatalyst loading (b), and after microbial incubation (c). SEM images of HF-TiO2 coated sponge carriers showing biofilm attachment: at the initial stage (d) and after ICPB at 58 days (e). Reproduced with permission from Ref. [40]. Copyright 2023, Elsevier. SEM images: before (f) and after (g) ICPB reaction on the exterior of the carrier; prior to (h) and following ICPB reaction (i) on the interior of the carrier. Reproduced with permission from Ref. [72]. Copyright 2022, Society of Chemical Industry.
Fig. 6. (a) Temporal changes in DHA for VPCB-L (biofilm-coated loofah sponge carriers) and VPCB-P (biofilm-coated polyurethane sponge carriers). (b) Concentrations of proteins and polysaccharides in VPCB using different carrier types. (c) Schematic representation of experimental outcomes for VPCB-L and VPCB-P. Reproduced with permission from Ref. [77]. Copyright 2021, Elsevier.
Fig. 7. SEM image (a) and TEM image (b) of graded porous TiO2 ceramics, Reproduced with permission from Ref. [83]. Copyright 2014, the Royal Society of Chemistry. SEM images of the PUF (c) and the SiO2-TiO2/PUF (d). Reproduced with permission from Ref. [84]. Copyright 2015, Elsevier.
Fig. 8. Classification of PMFCs. (a) Bioanode-photocathode; (b) photoanode-biocathode; (c) ICPB anode-cathode; (d) photoanode-bioanode-cathode. (e) Bioanode and AgBr/ZnO photocathode charge transfer diagrams in a two-compartment PMFCs. Reproduced with permission from Ref. [86]. Copyright 2022, Elsevier. (f) Schematic diagram of the single-compartment coupled biocathode-TiO2/g-C3N4 photoanode PMFCs system. Reproduced with permission from Ref. [89]. Copyright 2019, Elsevier. (g) Schematic diagram of the degradation mechanism of the degradation mechanism of the tightly coupled photocatalysis-electricity production MFCs system. Reproduced with permission from Ref. [95]. Copyright 2019, Elsevier. (h) Mechanism diagram of TC degradation by bioanode and photoanode PMFCs systems. Reproduced with permission from Ref. [50]. Copyright 2023, Elsevier.
Compositions | Photocatalyst | Main result | Maximum power density | Ref. |
---|---|---|---|---|
Dual chamber bioanode-photocathode | Mo/W | metronidazole removal: 94.5% | 251mW/m2 | [ |
Single chamber photoanode-biocathode | TiO2/CN nanosheet/graphene | methyl orange: 90.0% | — | [ |
Single chamber MFC with photobiocathode | N-TiO2 | 2,4,6-trichlorophenol removal: 100% | — | [ |
Dual chamber bioanode-photocathode | BiOCl/reduced graphene oxide aerogel | oxytetracycline removal: 98.9% | 7.33 W/m3 | [ |
Dual chamber Photoanode-bioanode-cathode | TiO2 | trimethoprim removal: 100% | 75.1 mW/m2 | [ |
Dual chamber Photoanode-bioanode-cathode | CdS cage | tetracycline removal: 86.5% | 3.37 W/m2 | [ |
Single chamber bioanode-photocathode | BaTiO3 | COD removal: 90% | 498 mW/m2 | [ |
bioanode-photocathode | CdS | Cr(VI) removal: 97.4% | 166.93 mW/m2 | [ |
Dual chamber photoanode-bioanode-cathode | TiO2 | metronidazole removal: 100% | 11.2 mW/m2 | [ |
Dual chamber photocathode-bioanode | NiCo2O4/MoS2/graphite felts | Cr(VI) removal: 83.6% phenol removal: 71.6% | 362.7 mW/m3 | [ |
Dual chamber photocathode-bioanode | GCN-TiO2 | organic matter and sodium dodecyl sulphate removal: 58.2% | 1.07 W/m3 | [ |
Single chamber photoanode-biofilm anode-air cathode | TiO2-C-BiVO4 | bisphenol A removal: 96.98% | 0.585 W/m2 | [ |
Dual chamber photocathode-bioanode | Fe3O4/FeWO4 | Cr(VI) removal: 99.98% | 124.29 mW/m2 | [ |
Dual chamber photocathode-bioanode | CN/ZnO/Bi4O5Br2 | rhodamine B removal: 90% | 0.35 mW/cm2 | [ |
Dual chamber photocathode-bioanode | Ti3C2 | Cr(VI) removal: 72.84% | 702.67 mW/m2 | [ |
Single chamber with ICPB anode | BPCNS | 2-chlorophenol removal: 67.1% | 255 mW/m2 | [ |
Single chamber photoanode-bioanode-cathode | TiO2 | 2-chlorophenol removal: 76.20% | 301 mW/m2 | [ |
Dual chamber photocathode-bioanode | BiFeO3/ZnO | Cu2+ removal: 90.7% | 1.301 W/m2 | [ |
Single chamber photoanode-bioanode-cathode | Ni/MXene | chloramphenicol removal: 82.62% | — | [ |
Dual chamber photocathode-bioanode | AgBr/ZnO | reactive Black 5 removal: 61% | 53.87 mW/m2 | [ |
Dual chamber vertically photocathode | ZnO/ND | toluene removal: 60.65% | 120 mW/m2 | [ |
Dual chamber photocathode-bioanode | PANi@CNTs | ibuprofen removal: 75.94% | 0.119 W/m2 | [ |
Dual chamber photocathode-bioanode | LiNbO3/CF | ofloxacin removal: 86.5% | 0.546 W/m2 | [ |
Single chamber photocathode-bioanode | CN/CdS | nitrofurazone removal: 76.0% | — | [ |
Dual chamber photocathode-bioanode | CeO2/TiO2 | toluene removal: 95% | — | [ |
Dual chamber bioanode-photocathode | CoFe2O4 | tetracycline hydrochloride removal: 95% | 409 mW/m3 | [ |
Dual chamber photocathode-bioanode | AgBr/CuO | reactive black 5 removal: 56% | 61.11 mW/m2 | [ |
Table 1 A summary of different PMFCs systems for pollutant treatment in last five years.
Compositions | Photocatalyst | Main result | Maximum power density | Ref. |
---|---|---|---|---|
Dual chamber bioanode-photocathode | Mo/W | metronidazole removal: 94.5% | 251mW/m2 | [ |
Single chamber photoanode-biocathode | TiO2/CN nanosheet/graphene | methyl orange: 90.0% | — | [ |
Single chamber MFC with photobiocathode | N-TiO2 | 2,4,6-trichlorophenol removal: 100% | — | [ |
Dual chamber bioanode-photocathode | BiOCl/reduced graphene oxide aerogel | oxytetracycline removal: 98.9% | 7.33 W/m3 | [ |
Dual chamber Photoanode-bioanode-cathode | TiO2 | trimethoprim removal: 100% | 75.1 mW/m2 | [ |
Dual chamber Photoanode-bioanode-cathode | CdS cage | tetracycline removal: 86.5% | 3.37 W/m2 | [ |
Single chamber bioanode-photocathode | BaTiO3 | COD removal: 90% | 498 mW/m2 | [ |
bioanode-photocathode | CdS | Cr(VI) removal: 97.4% | 166.93 mW/m2 | [ |
Dual chamber photoanode-bioanode-cathode | TiO2 | metronidazole removal: 100% | 11.2 mW/m2 | [ |
Dual chamber photocathode-bioanode | NiCo2O4/MoS2/graphite felts | Cr(VI) removal: 83.6% phenol removal: 71.6% | 362.7 mW/m3 | [ |
Dual chamber photocathode-bioanode | GCN-TiO2 | organic matter and sodium dodecyl sulphate removal: 58.2% | 1.07 W/m3 | [ |
Single chamber photoanode-biofilm anode-air cathode | TiO2-C-BiVO4 | bisphenol A removal: 96.98% | 0.585 W/m2 | [ |
Dual chamber photocathode-bioanode | Fe3O4/FeWO4 | Cr(VI) removal: 99.98% | 124.29 mW/m2 | [ |
Dual chamber photocathode-bioanode | CN/ZnO/Bi4O5Br2 | rhodamine B removal: 90% | 0.35 mW/cm2 | [ |
Dual chamber photocathode-bioanode | Ti3C2 | Cr(VI) removal: 72.84% | 702.67 mW/m2 | [ |
Single chamber with ICPB anode | BPCNS | 2-chlorophenol removal: 67.1% | 255 mW/m2 | [ |
Single chamber photoanode-bioanode-cathode | TiO2 | 2-chlorophenol removal: 76.20% | 301 mW/m2 | [ |
Dual chamber photocathode-bioanode | BiFeO3/ZnO | Cu2+ removal: 90.7% | 1.301 W/m2 | [ |
Single chamber photoanode-bioanode-cathode | Ni/MXene | chloramphenicol removal: 82.62% | — | [ |
Dual chamber photocathode-bioanode | AgBr/ZnO | reactive Black 5 removal: 61% | 53.87 mW/m2 | [ |
Dual chamber vertically photocathode | ZnO/ND | toluene removal: 60.65% | 120 mW/m2 | [ |
Dual chamber photocathode-bioanode | PANi@CNTs | ibuprofen removal: 75.94% | 0.119 W/m2 | [ |
Dual chamber photocathode-bioanode | LiNbO3/CF | ofloxacin removal: 86.5% | 0.546 W/m2 | [ |
Single chamber photocathode-bioanode | CN/CdS | nitrofurazone removal: 76.0% | — | [ |
Dual chamber photocathode-bioanode | CeO2/TiO2 | toluene removal: 95% | — | [ |
Dual chamber bioanode-photocathode | CoFe2O4 | tetracycline hydrochloride removal: 95% | 409 mW/m3 | [ |
Dual chamber photocathode-bioanode | AgBr/CuO | reactive black 5 removal: 56% | 61.11 mW/m2 | [ |
Photocatalyst | Carriers | Coating method | Main result | Ref. | |
---|---|---|---|---|---|
Cu, N-TiO2 | polytetrafluoroethylene | — | phenanthrene removal: 88.63%; TOC removal: 72.20% | [ | |
BiOCl/ Bi2WO6/Bi | polyurethane sponge | powder spraying method | tetracycline hydrochloride removal: 97.2% | [ | |
TiO2 | bagasse cellulose | — | methylene blue removal: 78.91% | [ | |
TiO2 | bagasse cellulose | — | methylene blue removal: 92.08% | [ | |
TiO2/CN | polyurethane sponge | — | nitrate removal: 40.3% | [ | |
Ag-GeO2/ N-TiO2 | hollow fibers | impregnation method | DOC removal: 98%; COD removal: 91% | [ | |
TiO2 | polyurethane sponge | — | 2-methylisoborneol removal: 88.9%; geosmin removal:85% | [ | |
Bi24O31Br10 | loofah sponge | powder coating method | tetracycline hydrochloride removal: 64.0% | [ | |
CN | polyurethane sponge | — | ciprofloxacin removal: 94% | [ | |
C-TiO2 | polyurethane sponge | — | absorbable organic halogen removal: 80.3% COD removal: 90.5%; DOC removal: 86.7% | [ | |
TiO2 | porous cellulose | — | COD removal: 92.06%; NH3--N removal: 97.16% total phosphorus removal: 94.83% | [ | |
Ag-TiO2 | cotton fabric | — | tetracycline removal: 94.7% | [ | |
Bi2WO6/CN | polyurethane sponge | powder coating method | atrazine removal: 29.2% | [ | |
TiO2 | polyurethane sponge | — | tetracycline hydrochloride removal: 98% | ||
TiO2 | bagasse cellulose composite | — | absorbable organic halogen removal: 95% COD removal: 91%; DOC removal: 82% | [ | |
TiO2 | polyurethane sponge | low-temperature bonding method | 2,4,6-trichlorophenol removal: 100% | [ | |
CNT-Ag-TiO2 | CAT@SA | — | congo red removal: 93.5%; COD removal: 94.3% | [ | |
CN | CF | — | sulfamethoxazole removal: 95% | [ | |
CdS/CN | graphite felts | simple coating procedure | p-chlorophenol removal: 95%; TOC removal: 77% | [ | |
SBC-TiO2 | sugarcane bagasse cellulose composite | — | 1,2,3-trichlorobenzene removal: 92.03% 1,3,5-trichlorobenzene removal: 95.00% | [ | |
Ag-TiO2 | nonwoven cotton fabrics | — | Cu removal: 81.3% | [ | |
TiO2 | cellulose carrier | simple and efficient low-temperature process | 1,2,4-trichlorobenzene removal: 68.01% | [ | |
Fe3+/CN | polymeric sponge cubes | — | sulfamethoxazole removal: 96.27 %; COD removal: 86.57% | [ | |
UiO-66-NH2 foam | UiO-66-NH2 foam | — | tetracycline hydrochloride removal: 96.9% ciprofloxacin removal: 87.9% | [ | |
TiO2 | polyurethane sponge | — | cefalexin removal: 100% | [ | |
bio-CdS | polyurethane sponge | — | tetracycline hydrochloride removal: 87.2% Cd2+ removal: 98.4% | [ | |
gC3N4/CdS | loofah sponge | — | ciprofloxacin removal: 95% | [ | |
BiOI | CF | — | triclosan removal: 89% | [ | |
FeMgAl-LDH | polyurethane sponge | modified powder spraying method | NO3- removal: 54.45%; NH4+ removal: 42.57% | [ | |
Fe3+/CN | polyurethane sponge | — | sulfamethoxazole removal: 81.2% | [ | |
CN/MoS2 | chitosan modified polyurethane sponge | — | congo red removal: 99.5%; methyl orange removal: 97.5% carmine removal: 99.5% | [ | |
N-TiO2 | bagasse cellulose composite | — | absorbable organic halogen removal: 95% COD removal: 91%; DOC removal: 85% | [ | |
BiOBr/CN | polyurethane sponge | — | crude oil removal: 89.08% | [ | |
B-Bi3O4Cl | polyurethane sponge | — | ciprofloxacin removal: 95% | [ | |
BC/CN | BC/CN three-dimensional porous hydrogel | — | tetracycline hydrochloride removal:96.0% | [ | |
Cu-CN | Cu-CN | — | methyl orange removal:86.04%; reactive blue removal: 97.95% | [ | |
TiO2/CN | polyurethane sponge | — | nitrate removal:75.6% | [ | |
B-Bi3O4Cl | polyurethane sponge | — | ciprofloxacin removal: 94%; Cr(VI) removal:100% | [ |
Table 2 Over the past five years, the influence of various photocatalysts, carriers, and coating techniques on pollutant removal through the ICPB system has been examined.
Photocatalyst | Carriers | Coating method | Main result | Ref. | |
---|---|---|---|---|---|
Cu, N-TiO2 | polytetrafluoroethylene | — | phenanthrene removal: 88.63%; TOC removal: 72.20% | [ | |
BiOCl/ Bi2WO6/Bi | polyurethane sponge | powder spraying method | tetracycline hydrochloride removal: 97.2% | [ | |
TiO2 | bagasse cellulose | — | methylene blue removal: 78.91% | [ | |
TiO2 | bagasse cellulose | — | methylene blue removal: 92.08% | [ | |
TiO2/CN | polyurethane sponge | — | nitrate removal: 40.3% | [ | |
Ag-GeO2/ N-TiO2 | hollow fibers | impregnation method | DOC removal: 98%; COD removal: 91% | [ | |
TiO2 | polyurethane sponge | — | 2-methylisoborneol removal: 88.9%; geosmin removal:85% | [ | |
Bi24O31Br10 | loofah sponge | powder coating method | tetracycline hydrochloride removal: 64.0% | [ | |
CN | polyurethane sponge | — | ciprofloxacin removal: 94% | [ | |
C-TiO2 | polyurethane sponge | — | absorbable organic halogen removal: 80.3% COD removal: 90.5%; DOC removal: 86.7% | [ | |
TiO2 | porous cellulose | — | COD removal: 92.06%; NH3--N removal: 97.16% total phosphorus removal: 94.83% | [ | |
Ag-TiO2 | cotton fabric | — | tetracycline removal: 94.7% | [ | |
Bi2WO6/CN | polyurethane sponge | powder coating method | atrazine removal: 29.2% | [ | |
TiO2 | polyurethane sponge | — | tetracycline hydrochloride removal: 98% | ||
TiO2 | bagasse cellulose composite | — | absorbable organic halogen removal: 95% COD removal: 91%; DOC removal: 82% | [ | |
TiO2 | polyurethane sponge | low-temperature bonding method | 2,4,6-trichlorophenol removal: 100% | [ | |
CNT-Ag-TiO2 | CAT@SA | — | congo red removal: 93.5%; COD removal: 94.3% | [ | |
CN | CF | — | sulfamethoxazole removal: 95% | [ | |
CdS/CN | graphite felts | simple coating procedure | p-chlorophenol removal: 95%; TOC removal: 77% | [ | |
SBC-TiO2 | sugarcane bagasse cellulose composite | — | 1,2,3-trichlorobenzene removal: 92.03% 1,3,5-trichlorobenzene removal: 95.00% | [ | |
Ag-TiO2 | nonwoven cotton fabrics | — | Cu removal: 81.3% | [ | |
TiO2 | cellulose carrier | simple and efficient low-temperature process | 1,2,4-trichlorobenzene removal: 68.01% | [ | |
Fe3+/CN | polymeric sponge cubes | — | sulfamethoxazole removal: 96.27 %; COD removal: 86.57% | [ | |
UiO-66-NH2 foam | UiO-66-NH2 foam | — | tetracycline hydrochloride removal: 96.9% ciprofloxacin removal: 87.9% | [ | |
TiO2 | polyurethane sponge | — | cefalexin removal: 100% | [ | |
bio-CdS | polyurethane sponge | — | tetracycline hydrochloride removal: 87.2% Cd2+ removal: 98.4% | [ | |
gC3N4/CdS | loofah sponge | — | ciprofloxacin removal: 95% | [ | |
BiOI | CF | — | triclosan removal: 89% | [ | |
FeMgAl-LDH | polyurethane sponge | modified powder spraying method | NO3- removal: 54.45%; NH4+ removal: 42.57% | [ | |
Fe3+/CN | polyurethane sponge | — | sulfamethoxazole removal: 81.2% | [ | |
CN/MoS2 | chitosan modified polyurethane sponge | — | congo red removal: 99.5%; methyl orange removal: 97.5% carmine removal: 99.5% | [ | |
N-TiO2 | bagasse cellulose composite | — | absorbable organic halogen removal: 95% COD removal: 91%; DOC removal: 85% | [ | |
BiOBr/CN | polyurethane sponge | — | crude oil removal: 89.08% | [ | |
B-Bi3O4Cl | polyurethane sponge | — | ciprofloxacin removal: 95% | [ | |
BC/CN | BC/CN three-dimensional porous hydrogel | — | tetracycline hydrochloride removal:96.0% | [ | |
Cu-CN | Cu-CN | — | methyl orange removal:86.04%; reactive blue removal: 97.95% | [ | |
TiO2/CN | polyurethane sponge | — | nitrate removal:75.6% | [ | |
B-Bi3O4Cl | polyurethane sponge | — | ciprofloxacin removal: 94%; Cr(VI) removal:100% | [ |
Fig. 9. Kubelka-Munk spectroscopy (a) and the PL spectra (b) of CN, CN-LC, Cu-CN and Cu-CN-LC. Reproduced with permission from Ref. [129]. Copyright 2024, Elsevier. (c) EIS spectra for both ZnO and ZnO/ND. Reproduced with permission from Ref. [49]. Copyright 2021, Elsevier. (d) UV-vis DRS for the CN, TiO2, and TiO2/CN photocatalysts. Reproduced with permission from Ref. [143]. Copyright 2019, Elsevier.
Fig. 10. The UV-vis absorbance spectra (a) and the band gap plots (b) of cAP, MnOx and MnOx-cAP composites. (c) PL spectra of cAP and the MnOx-cAP composites. Reproduced with permission from Ref. [32]. Copyright 2019, Elsevier. (d) FESEM images 3 wt% of BiFeO3/ZnO. (e) UV-vis DRS of pure ZnO, pure BiFeO3 and BiFeO3/ZnO composites at varying BiFeO3 loadings. (f) K-M plots as a function of hv for pure ZnO, pure BiFeO3, and 3 wt% BiFeO3/ZnO. Reproduced with permission from Ref. [108]. Copyright 2021, Elsevier.
Source of inoculum | Recalcitrant pollutant | Microbial species enriched by the addition of contaminants | Ref. |
---|---|---|---|
activated sludge | venlafaxine | actinobacteriota (11.2%), proteobacteria (28.3%), chloroflexi (15.1%), acidobacteriota, bacteroidota | [ |
activated sludge | nitrate | acidovorax, thauera, hydrogenophaga, rhodococcus | [ |
activated sludge | sulfadiazine, total nitrogen, total phosphorus | proteobacteria (78.25 %), bacteroidota (4.28 %), actinobacteriota (4.72 %), firmicutes (1.16 %), chloroflexi (7.63 %) | [ |
activated sludge | sulfamethoxazole | Acidovorax (10.2 %), simplicispira (7.5%), castellaniella, raoultella, giesbergeria, alicycliphilus | [ |
activated sludge | ciprofloxacin, Cr(VI) | proteobacteria (44.52%), actinobacteria (18.68%) | [ |
activated sludge | metronidazole | alcaligenes, brevundimonas, pseudochrobactrum, leucobacter | [ |
activated sludge | tetracycline hydrochloride | lactococcus (11.06%), pseudomonas, burkholderiaceae, flavobacterium | [ |
sludge | cefalexin | UKL13-1 (16.37%), flavobacterium (13.93%), fusibacter (11.61%), streptococcus (7.53%), unclassified_f comamonadaceae (5.23%) | [ |
Shewanella oneidensis MR-4 | Cd, tetracycline hydrochloride | shewanella oneidensis MR-4 | [ |
activated sludge | NO3−, NH4+ | proteobacteria, firmicutes, actinobacteria, bacteroidetes | [ |
activated sludge | sulfamethoxazole | nakamurella (44.22%), chryseobacterium (14.33%), rhodanobacter (10.54) | [ |
Rhodopseudomonas palustris | Congo red, methyl orange, carmine | rhodopseudomonas palustris | [ |
activated sludge | absorbable organic halogen | paenibacilus, Ruminiclostridium, sphingbscteriaceae | [ |
activated sludge | crude oil | acinetobacter (79.19%), sphingobium | [ |
activated sludge | ciprofloxacin | pseudoxanthomonas, ferruginibacter, clostridium, stenotrophomonas, comamonas | [ |
activated sludge | 1,2,4-trichlorobenzene | methyloversatilis, sediminibacterium, ruminiclostridium, sporomusa | [ |
activated sludge | Cu | proteobacteria (56.3%), actinobacteria (22.7%), bacteroidetes (6.0%), chloroflexi (1.7%), chlorophyta (8.4%), planctomycetes (1.9%), verrucomicrobia (0.5%) | [ |
activated sludge | 1,2,3-tricholorobenze, 1,3,5-tricholorobenzene | cutaneotrichosporon, trichoderma, apiotrichum, zoogloea, dechloromonas, flavihumibacter, cupriavidus | [ |
sludge | p-chlorophenol | chryseobacterium (19.98%), stenotrophomonas (17.11%), rhodopseudomonas (9.34%) | [ |
activated sludge | sulfamethoxazole, Cr(VI) | Proteobacteria (52.77%), actinobacteria increased (37.12%), chloroflexus (3.21%), patescibateria (1.46%), bacteroidota (2.57%) | [ |
activated sludge | sulfamethoxazole | nakamurella (55.2%), rhodanobacter (4.05%) | [ |
Rhodopseudomonas palustris | congo red | rhodopseudomonas palustris | [ |
activated sludge | 2,4,6-trichlorophenol | acinetobacter, methylophilus, pseudomonas, acidovorax, flavobacterium | [ |
activated sludge | absorbable organic halogen | phanerochaete, cutaneotrichosporon, rozellomycota, candida, rhodotorula | [ |
activated sludge, Scenedesmus obliquus | 4-chlorophenol, 4-fluorophenol, phenol | rhodococcus, pseudomonas, scenedesmus obliquus | [ |
activated sludge | absorbable organic halogen | proteobacteria (48.66%), bacteroidetes (13.86%), chloroflexiv (10.93%) | [ |
swine wastewater | ciprofloxacin | alicycliphilus (10.13%), pseudomonas (4.73%), ochrobactrum (6.33%), xanthobacter (6.52%), escherichia-shigella (10.45%) | [ |
activated sludge | tetracycline hydrochloride | bacteriovorax, formivibrio, paludibacter | [ |
activated sludge | 2-methylisoborneol, geosmin | zoogloea (24.6%), thauera (15.0%), flavobacterium (2.4%), acinetobacter, Comamonas, brevundimonas | [ |
the urban river (Jinchuan River) | nitrate | chloroflexi (21.92%), acidobacteria (4.20%) | [ |
activated sludge | methylene blue | betaproteobacteri (53.44%), alphaproteobacteria, betaproteobacteria, gammaproteobacteria, deltaproteobacteria | [ |
soil | phenanthrene | pseudomonadaceae (94.39%) | [ |
Dictyosphaerium | sulfamethazine | dictyosphaerium | [ |
Table 3 A summary of different microorganisms detected in ICPB system for treating pollutants over the last five years.
Source of inoculum | Recalcitrant pollutant | Microbial species enriched by the addition of contaminants | Ref. |
---|---|---|---|
activated sludge | venlafaxine | actinobacteriota (11.2%), proteobacteria (28.3%), chloroflexi (15.1%), acidobacteriota, bacteroidota | [ |
activated sludge | nitrate | acidovorax, thauera, hydrogenophaga, rhodococcus | [ |
activated sludge | sulfadiazine, total nitrogen, total phosphorus | proteobacteria (78.25 %), bacteroidota (4.28 %), actinobacteriota (4.72 %), firmicutes (1.16 %), chloroflexi (7.63 %) | [ |
activated sludge | sulfamethoxazole | Acidovorax (10.2 %), simplicispira (7.5%), castellaniella, raoultella, giesbergeria, alicycliphilus | [ |
activated sludge | ciprofloxacin, Cr(VI) | proteobacteria (44.52%), actinobacteria (18.68%) | [ |
activated sludge | metronidazole | alcaligenes, brevundimonas, pseudochrobactrum, leucobacter | [ |
activated sludge | tetracycline hydrochloride | lactococcus (11.06%), pseudomonas, burkholderiaceae, flavobacterium | [ |
sludge | cefalexin | UKL13-1 (16.37%), flavobacterium (13.93%), fusibacter (11.61%), streptococcus (7.53%), unclassified_f comamonadaceae (5.23%) | [ |
Shewanella oneidensis MR-4 | Cd, tetracycline hydrochloride | shewanella oneidensis MR-4 | [ |
activated sludge | NO3−, NH4+ | proteobacteria, firmicutes, actinobacteria, bacteroidetes | [ |
activated sludge | sulfamethoxazole | nakamurella (44.22%), chryseobacterium (14.33%), rhodanobacter (10.54) | [ |
Rhodopseudomonas palustris | Congo red, methyl orange, carmine | rhodopseudomonas palustris | [ |
activated sludge | absorbable organic halogen | paenibacilus, Ruminiclostridium, sphingbscteriaceae | [ |
activated sludge | crude oil | acinetobacter (79.19%), sphingobium | [ |
activated sludge | ciprofloxacin | pseudoxanthomonas, ferruginibacter, clostridium, stenotrophomonas, comamonas | [ |
activated sludge | 1,2,4-trichlorobenzene | methyloversatilis, sediminibacterium, ruminiclostridium, sporomusa | [ |
activated sludge | Cu | proteobacteria (56.3%), actinobacteria (22.7%), bacteroidetes (6.0%), chloroflexi (1.7%), chlorophyta (8.4%), planctomycetes (1.9%), verrucomicrobia (0.5%) | [ |
activated sludge | 1,2,3-tricholorobenze, 1,3,5-tricholorobenzene | cutaneotrichosporon, trichoderma, apiotrichum, zoogloea, dechloromonas, flavihumibacter, cupriavidus | [ |
sludge | p-chlorophenol | chryseobacterium (19.98%), stenotrophomonas (17.11%), rhodopseudomonas (9.34%) | [ |
activated sludge | sulfamethoxazole, Cr(VI) | Proteobacteria (52.77%), actinobacteria increased (37.12%), chloroflexus (3.21%), patescibateria (1.46%), bacteroidota (2.57%) | [ |
activated sludge | sulfamethoxazole | nakamurella (55.2%), rhodanobacter (4.05%) | [ |
Rhodopseudomonas palustris | congo red | rhodopseudomonas palustris | [ |
activated sludge | 2,4,6-trichlorophenol | acinetobacter, methylophilus, pseudomonas, acidovorax, flavobacterium | [ |
activated sludge | absorbable organic halogen | phanerochaete, cutaneotrichosporon, rozellomycota, candida, rhodotorula | [ |
activated sludge, Scenedesmus obliquus | 4-chlorophenol, 4-fluorophenol, phenol | rhodococcus, pseudomonas, scenedesmus obliquus | [ |
activated sludge | absorbable organic halogen | proteobacteria (48.66%), bacteroidetes (13.86%), chloroflexiv (10.93%) | [ |
swine wastewater | ciprofloxacin | alicycliphilus (10.13%), pseudomonas (4.73%), ochrobactrum (6.33%), xanthobacter (6.52%), escherichia-shigella (10.45%) | [ |
activated sludge | tetracycline hydrochloride | bacteriovorax, formivibrio, paludibacter | [ |
activated sludge | 2-methylisoborneol, geosmin | zoogloea (24.6%), thauera (15.0%), flavobacterium (2.4%), acinetobacter, Comamonas, brevundimonas | [ |
the urban river (Jinchuan River) | nitrate | chloroflexi (21.92%), acidobacteria (4.20%) | [ |
activated sludge | methylene blue | betaproteobacteri (53.44%), alphaproteobacteria, betaproteobacteria, gammaproteobacteria, deltaproteobacteria | [ |
soil | phenanthrene | pseudomonadaceae (94.39%) | [ |
Dictyosphaerium | sulfamethazine | dictyosphaerium | [ |
Source of inoculum | Recalcitrant pollutant | Source of biofilm | Microbial species enriched by the addition of contaminants | Ref. |
---|---|---|---|---|
domestic wastewater | nitrofurazone | bioanode | geobacter (67.73%) | [ |
anaerobic sludge | oxytetracycline | bioanode | geobacter (27.63%) | [ |
municipal wastewater | 2,4,6-trichlorophenol | biophoto-cathode | dechlorobacter (8.6%), thauera (9.2%) arenimonas (4.9%) | [ |
— | tetracycline | bioanode | proteobacteria (43.5%), geobacter (33.2%), bacteroidetes (8.7%) | [ |
municipal sludge | metronidazole | bioanode | proteobacteria (53.59%), actinobacteria (29.7%) | [ |
another MFC | o-chlorophenol | bioanode | comamonadaceae (32.1%), Geobacter (22.5%), azospirillum (17.0%) | [ |
another MFC | o-chlorophenol | bioanode | geobacter (54.2%), PHOS-HE36 fam (16.4%), pseudomonas (2.0%) | [ |
activated sludge | trimethoprim | bioanode | proteobacteria (35.0%), actinobacteria (24.1%) | [ |
— | tetracycline | bioanode | proteobacteria (43.5%), geobacter (33.2%) | [ |
— | bisphenol A | biofilm anode | geobacter (33.2%), pseudomonas (11.2%) | [ |
activated sludge | Cr(VI) | bioanode | pseudomonas (20.98%) | [ |
activated sludge | toluene | bioanode | acetobacter (~25%), clostridium_sensu_stricto_12 (13.46%), burkholderia-caballeronia-paraburkholderia (3.33%) | [ |
Table 4 A summary of different microorganisms detected in PMFCs for treating pollutants over the last five years.
Source of inoculum | Recalcitrant pollutant | Source of biofilm | Microbial species enriched by the addition of contaminants | Ref. |
---|---|---|---|---|
domestic wastewater | nitrofurazone | bioanode | geobacter (67.73%) | [ |
anaerobic sludge | oxytetracycline | bioanode | geobacter (27.63%) | [ |
municipal wastewater | 2,4,6-trichlorophenol | biophoto-cathode | dechlorobacter (8.6%), thauera (9.2%) arenimonas (4.9%) | [ |
— | tetracycline | bioanode | proteobacteria (43.5%), geobacter (33.2%), bacteroidetes (8.7%) | [ |
municipal sludge | metronidazole | bioanode | proteobacteria (53.59%), actinobacteria (29.7%) | [ |
another MFC | o-chlorophenol | bioanode | comamonadaceae (32.1%), Geobacter (22.5%), azospirillum (17.0%) | [ |
another MFC | o-chlorophenol | bioanode | geobacter (54.2%), PHOS-HE36 fam (16.4%), pseudomonas (2.0%) | [ |
activated sludge | trimethoprim | bioanode | proteobacteria (35.0%), actinobacteria (24.1%) | [ |
— | tetracycline | bioanode | proteobacteria (43.5%), geobacter (33.2%) | [ |
— | bisphenol A | biofilm anode | geobacter (33.2%), pseudomonas (11.2%) | [ |
activated sludge | Cr(VI) | bioanode | pseudomonas (20.98%) | [ |
activated sludge | toluene | bioanode | acetobacter (~25%), clostridium_sensu_stricto_12 (13.46%), burkholderia-caballeronia-paraburkholderia (3.33%) | [ |
Fig. 13. Schematic illustration of the impact of photocatalytic and ICPB processes on the treatment of real Cu-containing water in various water matrices: tap water (a,b) and Yangtze River water (c,d) ([Cu]0 = 0.3 mmol/L, pH0 = 6.0). (e) Mechanisms that may be involved in the degradation of Cu complexes and recovery of Cu by ICPB systems. Reproduced with permission from Ref. [155]. Copyright 2022, Elsevier.
Fig. 14. EEM images of the solutions: before treatment (a) and after 1 and 3 h of treatment (b,c) with ICPB systems. Evaluation of system performance: TOC removal rates (d) and E. coli survival rates (e). Reproduced with permission from Ref. [188]. Copyright 2022 Elsevier.
Fig. 15. (a) Contaminant degradation mechanisms in ICPB. (b) Biodegradation, photocatalytic degradation, and synergistic degradation in a dynamic system with a hydraulic retention time of 4.0 h. (c) Pyrosequencing analysis of microbial DNA before (Raw) and after (BP) synergistic degradation at the genus and phylum levels. Reproduced with permission from Ref. [75]. Copyright 2016 Elsevier.
Fig. 16. (a) Schematic diagram of electron transfer and TMP degradation mechanism. (b) Degradation of TMP in two systems. SEM images showing the bioanode carbon brushes of MFC (c) and PMFCs (d), as well as the nickel grids (e). The community structure of the anode biofilms in PMFCs and MFC, along with raw sludge samples, at both the phylum (f) and genus levels (g). Reproduced with permission from Ref. [101]. Copyright 2023, Elsevier.
Fig. 17. Removal of 2-MIB (a) and GSM (b) in ICPB-SCA, ICPB, P, B, and AD systems. (c) Concentration of 2-MIB in the ICPB-SCA system over five operating cycles. (d) The synergistic effect of adsorption, photocatalysis, and biodegradation in the SCA-enhanced ICPB system. Reproduced with permission from Ref. [149]. Copyright 2020, Elsevier.
Fig. 18. (a) The microbial genera's relative abundance in biofilms adhering to the carrier surface within the B and ICPB-SCA systems prior to. (b) Potential degradation routes for 2-MIB and GSM within the ICPB system. Reproduced with permission from Ref. [149]. Copyright 2020, Elsevier.
Nomenclature | |||
---|---|---|---|
ICPB | intimately coupling photocatalysis and biodegradation | MES | microbial electrochemical system |
PMFCs | photosynthetic microbial fuel cells | VPCB | visible-light-induced ICPB |
SDZ | sulfadiazine | MFC | microbial fuel cell |
COD | chemical oxygen demand | TN | total nitrogen |
ROS | reactive oxygen species | e- | electrons |
TP | total phosphorus | h+ | holes |
hν | photon energy | VB | valence band |
CF | carbon felt | CB | conduction band |
PEM | proton exchange membrane | TMP | trimethoprim |
TCH | tetracycline hydrochloride | CN | g-C3N4 |
LC | laccase | MO | methyl orange |
PL | photoluminescence | DOC | Dissolved organic carbon |
SMX | sulfamethoxazole | CNT | carbon nanotube |
AOX | adsorbable organic halogens | UV | ultraviolet |
CR | congo red | TOC | total organic carbon |
MnOx-cAP | Mn3O4/MnO2-Ag3PO4 | MB | methylene blue |
PHE | phenanthrene | TC | tetracycline |
CIP | ciprofloxacin | CP | chlorophenol |
TCP | trichlorophenol | ND | nanodiamond |
IEM | ion-exchange membrane | PAHs | polycyclic aromatic hydrocarbons |
EET | extracellular electron transport | EAB | electrochemically active bacteria |
RhB | rhodamine B | 2,4-DCP | 2,4-dichlorophenol |
MNZ | metronidazole | CF | carbon felt |
OTC | oxytetracycline | GSM | geosmin |
2-MIB | 2-methylisoborneol | DO | dissolved oxygen |
Nomenclature | |||
---|---|---|---|
ICPB | intimately coupling photocatalysis and biodegradation | MES | microbial electrochemical system |
PMFCs | photosynthetic microbial fuel cells | VPCB | visible-light-induced ICPB |
SDZ | sulfadiazine | MFC | microbial fuel cell |
COD | chemical oxygen demand | TN | total nitrogen |
ROS | reactive oxygen species | e- | electrons |
TP | total phosphorus | h+ | holes |
hν | photon energy | VB | valence band |
CF | carbon felt | CB | conduction band |
PEM | proton exchange membrane | TMP | trimethoprim |
TCH | tetracycline hydrochloride | CN | g-C3N4 |
LC | laccase | MO | methyl orange |
PL | photoluminescence | DOC | Dissolved organic carbon |
SMX | sulfamethoxazole | CNT | carbon nanotube |
AOX | adsorbable organic halogens | UV | ultraviolet |
CR | congo red | TOC | total organic carbon |
MnOx-cAP | Mn3O4/MnO2-Ag3PO4 | MB | methylene blue |
PHE | phenanthrene | TC | tetracycline |
CIP | ciprofloxacin | CP | chlorophenol |
TCP | trichlorophenol | ND | nanodiamond |
IEM | ion-exchange membrane | PAHs | polycyclic aromatic hydrocarbons |
EET | extracellular electron transport | EAB | electrochemically active bacteria |
RhB | rhodamine B | 2,4-DCP | 2,4-dichlorophenol |
MNZ | metronidazole | CF | carbon felt |
OTC | oxytetracycline | GSM | geosmin |
2-MIB | 2-methylisoborneol | DO | dissolved oxygen |
|
[1] | 封波, 冯丹宁, 裴燕, 宗保宁, 乔明华, 李伟. 缺陷氮化碳负载铜单原子用于高选择性光催化氧化甲烷制甲醇[J]. 催化学报, 2025, 76(9): 96-107. |
[2] | 钟威, 孟爱云, 蔡旭东, 甘义遥, 王敬涛, 苏耀荣. Co诱导不对称电荷分布弱化S-Had键增强NiCoS助剂的光催化制氢性能[J]. 催化学报, 2025, 76(9): 108-119. |
[3] | 郑相阳, 吴金往, 史海峰. 双空位诱导极化场与内建电场增强的S型异质结用于去除抗生素及六价铬[J]. 催化学报, 2025, 76(9): 50-64. |
[4] | 季碧铖, 李希成, 高帅, 秦泽平, 汪长征, 王强, 王崇臣. 自发极化增强的空心球Bi4Ti3O12促进高效压电光催化: 构效关系与降解机制[J]. 催化学报, 2025, 76(9): 133-145. |
[5] | 李世杰, 李蕊, 董珂欣, 刘艳萍, 于欣, 李文尧, 刘通, 赵再望, 张明义, 张宾, 陈晓波. 自漂浮Bi4O5Br2/磷掺杂氮化碳/碳纤维布S型异质结光催化剂增强去除新兴有机污染物[J]. 催化学报, 2025, 76(9): 37-49. |
[6] | 李正, 曾影, 董媛媛, 吕红金, 杨国昱. 十钨酸盐+Pd/C催化体系中金属/H+位点的调控用于光催化生成糠基乙醚[J]. 催化学报, 2025, 75(8): 137-146. |
[7] | 熊祺, 史全全, 王彬力, 李杲. 晶面诱导还原导向的AgBr/Ag0/TiO2{100} Z型异质结用于四环素去除[J]. 催化学报, 2025, 75(8): 164-179. |
[8] | 王啟航, 孟利, 李卓, 杨卓然, 汤意南, 余浪, 李志君, 孙建辉, 井立强. 钴单原子-磷酸功能化还原氧化石墨烯/苝四羧酸纳米片异质结用于高效光催化生产过氧化氢[J]. 催化学报, 2025, 75(8): 192-203. |
[9] | 陈鸿境, 李月英, 陈敏, 解仲凯, 施伟东. 硫电子桥介导CuInS2/CuS异质结构实现高选择性CO2光还原为C2H4[J]. 催化学报, 2025, 75(8): 180-191. |
[10] | 吴崇备, 楚飞鸿, 郝永超, 李璇, 贾晓月, 孙伊钒, 谷佳璇, 加鹏飞, 王傲冰, 江吉周. 共价有机框架的双氧气还原中心促进光催化合成H2O2[J]. 催化学报, 2025, 74(7): 329-340. |
[11] | 张自豪, 张家铭, 王海峰, 刘梦, 许垚, 刘铠玮, 张博杨, 史珂, 张继方, 马贵军. 基于Sm2Ti2O5S2纳米片各向异性电荷迁移性质提升光催化分解水产氢活性[J]. 催化学报, 2025, 74(7): 341-351. |
[12] | 张鹏坤, 吴秦汉, 王昊昱, 郭东昊, 赖雨洁, 陆东芳, 李吉庆, 林金国, 袁占辉, 陈孝云. Z型异质结Zn3(OH)2(V2O7)(H2O)2/V-Zn(O,S): 钒异价态与氧空位缺陷协同增强可见光催化固氮性能[J]. 催化学报, 2025, 74(7): 279-293. |
[13] | 张琳, 张慧, 方敬红, 崔嘉琳, 刘洁, 刘辉, 孙立水, 孙琼, 董立峰, 赵英杰. 高共轭和化学稳定的三维共价有机框架材料用于高效光催化CO2还原[J]. 催化学报, 2025, 74(7): 144-154. |
[14] | 郑馨龙, 宋一铭, 王崇太, 高奇志, 邵钟鋆, 林佳鑫, 翟佳迪, 李静, 史晓东, 吴道雄, 刘维峰, 黄玮, 陈琦, 田新龙, 刘雨昊. 铜/锌体系多元过渡金属硫化物光催化剂的半导体特性及其光催化制氢的应用与挑战[J]. 催化学报, 2025, 74(7): 22-70. |
[15] | 高文婧, 刘玉婵, 陈琛瑶, 练梓棋, 叶融凯, 戚朝荣, 胡建强. 可定量调控的双助催化剂协同电子-空穴传输体系的构筑及其增强的光催化性能[J]. 催化学报, 2025, 74(7): 319-328. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||