催化学报 ›› 2025, Vol. 78: 75-99.DOI: 10.1016/S1872-2067(25)64825-X

• 综述 • 上一篇    下一篇

基于分级纳米材料的光催化剂研究进展: 原理、设计及应用

吕佳乐a, 褚海亮a,*(), 邵春风b,*(), 孙立贤a, 代凯b,*()   

  1. a桂林电子科技大学材料科学与工程学院, 广西电子信息材料构效关系重点实验室, 广西大学氢/热/电相关能源材料与传感器工程研究中心, 广西桂林 541004
    b淮北师范大学, 绿色和精准合成化学及应用教育部重点实验室, 安徽污染物敏感材料与环境修复重点实验室, 安徽淮北 235000
    c西交利物浦大学化学与材料科学系, 江苏苏州 215123
  • 收稿日期:2025-05-26 接受日期:2025-06-20 出版日期:2025-11-18 发布日期:2025-10-14
  • 通讯作者: *电子信箱: daikai940@chnu.edu.cn (代凯), chuhailiang@guet.edu.cn (褚海亮), shaocf@chnu.edu.cn (邵春风).
  • 基金资助:
    国家自然科学基金(22278169);广西科技计划(AD25069070);安徽省高校优秀科研创新团队(2022AH010028);安徽省质量工程项目(2022sx134)

Recent advances in graded nanomaterial-based photocatalysts: Principles, designs, and applications

Jiale Lva, Hailiang Chua,*(), Chunfeng Shaob,*(), Lixian Suna, Graham Dawsonc, Kai Daib,*()   

  1. aGuangxi Key Laboratory of Information Materials, Guangxi University Engineering Research Center of Hydrogen/Heat/Electricity-Related Energy Materials and Sensors, School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, Guangxi, China
    bKey Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Huaibei Normal University, Huaibei 235000, Anhui, China
    cDepartment of Chemistry and Materials Science, Xi’an Jiaotong Liverpool University, Suzhou 215123, Jiangsu, China
  • Received:2025-05-26 Accepted:2025-06-20 Online:2025-11-18 Published:2025-10-14
  • Contact: *E-mail: daikai940@chnu.edu.cn (K. Dai), chuhailiang@guet.edu.cn (H. Chu), shaocf@chnu.edu.cn (C. Shao).
  • About author:Hailiang Chu (School of Materials Science and Engineering, Guilin University of Electronic Technology) received his Ph.D. degree from Dalian Institute of Chemical Physics, Chinese Academy of Sciences in 2008. His research interests focus on the synthesis and application of high-performance electrode materials for secondary batteries and supercapacitors and high-capacity hydrogen storage materials, including alloys, metal borohydrides, metal-N-H materials, ammonia borane, and their derivatives.
    Chunfeng Shao (Huaibei Normal University) received her Ph. D. from South China University of Technology in 2021. Her research interest is focused on the rational design and controllable synthesis of atomic-scale materials for applications in energy storage and catalysis. She has published more than 28 peer-reviewed papers, among which 20 are as the first author or corresponding author.
    Kai Dai (Huaibei Normal University) was invited as a member of Youth or Editorial Board of Chinese Journal of Catalysis, Composite Functional Materials, Renewable and Sustainable Energy, Chinese Journal of Structural Chemistry and Acta Physico-Chimica Sinica. Prof. Kai Dai received his B.A. degree from Anhui University (China) in 2002, and Ph.D. degree from Shanghai University (China) in 2007. He worked in Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences at 2007, and then in Huaibei Normal University at 2010. He is Expert of special allowance from Anhui Provincial Government (2024), Distinguished Young Scholars Recipients of Natural Science Foundation of Anhui Province (2018) and head of Anhui Provincial Excellent research and innovation team in universities (2022) and Anhui Provincial Teaching Team (2019). He has also been invited by Xi’an Jiaotong Liverpool University to be a visiting Professor and PhD co-supervisor since 2022. His research interests mainly focus on semiconductor nanomaterials for solar energy conversion. He has published more than 170 peer-reviewed papers.
  • Supported by:
    National Natural Science Foundation of China(22278169);Guangxi Science and Technology Program(AD25069070);Excellent Scientific Research and Innovation Team of Education Department of Anhui Province(2022AH010028);Anhui Provincial Quality Engineering Project(2022sx134)

摘要:

随着全球能源需求不断攀升和环境污染日益严重, 开发高效稳定的光催化材料成为解决能源与环境双重危机的关键. 传统化石能源的过度消耗导致温室气体二氧化碳浓度急剧上升, 引发全球气候变化、生态系统退化等严峻挑战. 与此同时, 工业废水、废气及塑料废弃物的无害化处理难题, 也对环境治理技术提出了更高要求. 光催化技术因其能够利用太阳能驱动化学反应, 在环境污染治理和清洁能源生产领域展现出巨大潜力. 然而, 现有光催化剂在光吸收范围、载流子分离效率和稳定性方面仍存在诸多局限, 极大制约了其实际应用效果. 分级纳米材料凭借多尺度孔隙结构、高比表面积和优化的电子传输路径等优势, 可有效解决传统光催化剂的瓶颈问题, 成为材料科学与能源环境领域的研究热点.

本文系统介绍了纳米材料在光催化领域的显著优势和最新进展. 分级纳米材料通过精心设计的多尺度孔隙结构, 实现了比表面积和反应物吸附能力的大幅提升. 这种多尺度孔隙结构不仅增加了材料的比表面积, 还优化了反应物的吸附和扩散路径, 从而显著提高了光催化剂的反应活性. 分级纳米材料利用层级异质结构有效优化了光生载流子的分离与传输路径. 这种结构通过精确调控不同半导体材料之间的能带排列, 形成高效的电子传输通道, 从而显著降低了电子-空穴复合率, 提高了光催化效率. 此外, 核壳构型的设计有效保护了活性组分, 提升了催化剂的稳定性和选择性. 核壳结构通过将活性组分包裹在壳层内部, 避免了其与反应环境的直接接触, 从而延长了催化剂的使用寿命. 还深入探讨了S型异质结的独特优势. 与传统的Z型异质结相比, S型异质结在保留高效光生载流子分离效率的同时, 避免了因能带位置限制导致的氧化还原能力下降问题. 通过能带结构的协同调控和内建电场的优化, S型异质结在维持高还原氧化能力的同时, 显著提升了光生载流子的分离效率. 阐述了原位表征技术在揭示光催化反应机制方面的重要作用. 借助X射线光电子能谱、X射线衍射、红外光谱、拉曼光谱、原位电子显微镜、紫外-可见吸收光谱和质谱等原位表征手段能够实时监测光催化剂在反应过程中的表面化学态演变、晶体相变化、反应中间体生成、微观结构动态调整、光吸收特性以及气态产物释放等关键信息. 这些动态数据为深入理解光催化过程中的电荷转移路径、反应动力学以及活性位点的构效关系提供了重要依据.

综上所述, 分级纳米材料通过精准调控纳米结构的尺寸、形貌和组成, 显著提升了光催化剂的性能, 在环境治理和清洁能源生产领域展现出广阔的应用前景. 未来研究应聚焦于进一步优化分级纳米材料的光吸收性能、载流子分离效率和表面反应活性, 同时加强原位表征技术与理论计算模拟的结合, 为新型高效光催化剂的设计与开发提供更坚实的理论基础和更明确的实践指导.

关键词: 多级纳米材料, 光催化, S型异质结, 原位表征, 电荷分离

Abstract:

The rise in global energy demand and environmental pollution highlights the importance of developing efficient and stable photocatalytic materials to address the energy crisis and environmental issues. Graded nanomaterials exhibit significant promise for photocatalysis due to their unique structural advantages, including multi-scale pores, high specific surface area, and optimized electron transport pathways. This review systematically examines the design principles and synthesis methods for hierarchical nanomaterials and their photocatalytic performance. Through modulation of porous structures, hierarchical heterojunctions, and core-shell configurations, graded nanomaterials notably improve light absorption efficiency, carrier separation, and surface reaction activity of photocatalysts. Strategies such as S-scheme heterojunctions and interface engineering further enhance the performance of photocatalysts for CO2 reduction, hydrogen production, and pollutant degradation. In situ characterization techniques offer dynamic insights into the photocatalytic mechanism. This study elucidates how hierarchical structures influence photocatalytic performance, discusses their potential applications in environmental treatment and clean energy, and proposes directions for future design and optimization of photocatalytic materials.

Key words: Hierarchical nanomaterials, Photocatalysis, S-scheme heterojunction, In-situ characterization, Charge separation