催化学报 ›› 2022, Vol. 43 ›› Issue (1): 158-166.DOI: 10.1016/S1872-2067(21)63867-6

• 论文 • 上一篇    下一篇

实时磁性测试深入理解锂离子电池中的过渡金属催化作用

李祥琨, 李召辉, 刘燕, 刘恒均, 赵志强, 郑莹, 陈林源, 叶万能, 李洪森, 李强*()   

  1. 青岛大学物理科学学院, 海洋观测与宽带通信技术协同创新中心, 生物多糖纤维成形与生态纺织国家重点实验室, 山东青岛266071
  • 收稿日期:2021-06-02 接受日期:2021-06-10 出版日期:2022-01-18 发布日期:2021-06-28
  • 通讯作者: 李强
  • 作者简介:第一联系人:

    共同第一作者.

  • 基金资助:
    国家自然科学基金(11504192);国家自然科学基金(51804173);国家自然科学基金(11674186);山东省自然科学基金(ZR2020MA073);青岛市科技局(16-5-1-2jch)

Transition metal catalysis in lithium-ion batteries studied by operando magnetometry

Xiangkun Li, Zhaohui Li, Yan Liu, Hengjun Liu, Zhiqiang Zhao, Ying Zheng, Linyuan Chen, Wanneng Ye, Hongsen Li, Qiang Li*()   

  1. State Key Laboratory of Bio-Fibers and Eco-Textiles, University-Industry Joint Center for Ocean Observation and Broadband Communication, College of Physics, Qingdao University, Qingdao 266071, Shandong, China
  • Received:2021-06-02 Accepted:2021-06-10 Online:2022-01-18 Published:2021-06-28
  • Contact: Qiang Li
  • About author:* E-mail: liqiang@qdu.edu.cn
    First author contact:

    Contributed equally to this work.

  • Supported by:
    National Natural Science Foundation of China(11504192);National Natural Science Foundation of China(51804173);National Natural Science Foundation of China(11674186);the National Science Foundation of Shandong Province(ZR2020MA073);Science and Technology Board of Qingdao(16-5-1-2jch)

摘要:

催化剂由于具有降低电化学过电位和改善动力学条件的能力, 在各种储能器件中起着至关重要的作用. 在锂离子电池中, 首圈放电过程中形成的固体电解质界面膜, 通常被认为是一旦形成就稳定不分解的. 而在过渡金属的催化下, 这种电解质分解衍生的聚合物凝胶状膜(PGF)能可逆地形成和分解. 这种过渡金属催化机制可以进行催化储锂, 即形成的PGF具有存储锂离子的能力, 可提供额外的储锂容量, 并且形成的PGF对枝晶的穿刺起到保护作用, 提高锂离子电池的安全性. 然而, 由于锂离子电池中非常复杂的反应环境, 常规测试手段很难对过渡金属的催化作用进行精准的表征. 高精度测试技术的缺乏, 限制了人们对催化机理的深入理解. 过渡金属的磁性对价态和电子态密度高度敏感, 所以在过渡金属催化过程中发生的电子转移会使其磁性发生相应的变化, 这将催化与磁性紧密的联系在一起, 使实时磁性测试成为研究过渡金属催化机理的有力工具. 利用实时磁性测试可以精确地检测到催化过程中由电子转移产生的磁响应信号, 从而对催化机理进行系统深入地研究.
本文采用高精度的实时磁性测试技术对磁控溅射制备的氧化钴电极进行了测试, 以得到关于锂离子电池中过渡金属催化的直接实验证据. 磁控溅射制备的薄膜电极, 没有导电添加剂和粘结剂的影响, 尽可能地避免了其他因素对锂离子电池电化学反应过程的影响, 更有利于对催化机理的深入研究. 借助高精度的实时磁性测试, 本文成功地检测到了在Co的催化作用下PGF的可逆形成和分解所引起的磁响应信号. 此外, 在不同的溅射气氛和溅射时间下, 制备了一系列CoO/Co薄膜, 系统研究了Co含量和薄膜厚度对催化性能的影响,得到了关于过渡族金属催化的更系统、更深入的认识. 实时磁性测试结果表明, Co含量增加会使Co的催化作用增强, 使催化过程中产生的磁响应信号变得更强. 另外, 电极厚度的降低可以提高催化储锂在电化学储锂中的占比, 使得催化反应的磁响应信号变得更加明显.
本文强调了实时磁性测试在催化领域研究中的重要性, 加深了对过渡金属催化机理的认识, 为设计基于催化储能的新型储能器件提供了关键的指导作用.

关键词: 过渡金属, 催化性能, 聚合物凝胶状膜, 锂离子电池, 实时磁性测试

Abstract:

Owing to the potential ability of metal nanoparticles to enhance the performance of energy storage devices, their catalytic performance has been studied by many researchers. However, a limited number of suitable characterization techniques does not allow fully elucidating their catalytic mechanism. Herein, high-accuracy operando magnetometry is employed to investigate the catalytic properties of a cobalt oxide electrode for lithium-ion batteries fabricated by magnetron sputtering. Using this technique, the magnetic responses generated by the Co-catalyzed reversible formation and decomposition of a polymer/gel-like film are successfully detected. A series of CoO/Co films are prepared by magnetron sputtering in different environments at various sputtering times to study the influence of Co content and film thickness on their catalytic properties. It is clearly demonstrated that increasing the Co content enhances the magnetic signal associated with the catalysis process. Furthermore, decreasing the electrode thickness increases the area affected by the catalytic reactions, which in turn enhances the corresponding magnetic responses. The obtained results experimentally confirm the catalytic activity of Co metal nanoparticles and provide a scientific guidance for designing advanced energy storage devices. This work also shows that operando magnetometry is a versatile technique for studying the catalytic effects of transition metals.

Key words: Transition metals, Catalytic performance, Polymer/gel-like film, Lithium-ion batteries, Operando magnetometry